Abstract
Bitcoin exchange security is crucial because of MEC's widespread use. Cryptojacking has compromised MEC app security and bitcoin exchange ecosystem functionality. This paper propose a cutting-edge neural network and AdaHessian optimization technique for cryptojacking prediction and defense. We provide a cutting-edge deep neural network (DNN) cryptojacking attack prediction approach employing pruning, post-training quantization, and AdaHessian optimization. To solve these problems, this paper apply pruning, post-training quantization, and AdaHessian optimization. A new framework for quick DNN training utilizing AdaHessian optimization can detect cryptojacking attempts with reduced computational cost. Pruning and post-training quantization improve the model for low-CPU on-edge devices. The proposed approach drastically decreases model parameters without affecting Cryptojacking attack prediction. The model has Recall 98.72%, Precision 98.91%, F1-Score 99.09%, MSE 0.0140, RMSE 0.0137, and MAE 0.0139. Our solution beats state-of-the-art approaches in precision, computational efficiency, and resource consumption, allowing more realistic, trustworthy, and cost-effective machine learning models. We address increasing cybersecurity issues holistically by completing the DNN optimization-security loop. Securing Crypto Exchange Operations delivers scalable and efficient Cryptojacking protection, improving machine learning, cybersecurity, and network management.
Original language | English |
---|---|
Journal | Journal of Cloud Computing |
Volume | 13 |
Issue number | 1 |
Early online date | 18 Mar 2024 |
DOIs | |
Publication status | E-pub ahead of print - 18 Mar 2024 |
Keywords
- Mobile Edge Computing (MEC) Deep Neural network model
- AdaHessian optimizer
- Crypto Exchange Operations
- Post-training quantization
- Cryptojacking attack