Abstract
Novel psychoactive substances (NPS) are increasingly prevalent world-wide although their pharmacological characteristics are largely unknown; those with stimulant properties, due to interactions with the dopamine transporter (DAT), have addictive potential which their users may not realise.
We evaluated the binding of 1-(1-benzofuran-5-yl)-N-methylpropan-2-amine (5-MAPB) to rat striatal DAT by means of quantitative autoradiography with [125I]RTI-121, and the effects of 5-MAPB on electrically-evoked dopamine efflux by fast-cyclic voltammetry in rat brain slices. 5-MAPB displaced [125I]RTI-121 in a concentration-dependent manner, with significant effects at 10 and 30 μM. The voltammetry data suggest that 5-MAPB reduces the rate of dopamine reuptake; while the peak dopamine efflux was not increased, the area under the curve was augmented. 5-MAPB can also cause reverse dopamine transport consistent with stimulant properties, more similar to amphetamine than cocaine. Molecular modelling and docking studies compared the binding site of DAT in complex with 5-MAPB to dopamine, amphetamine, 5-APB, MDMA, cocaine and RTI-121. This structural comparison reveals a binding mode for 5-MAPB found in the primary binding (S1) site, central to transmembrane domains 1, 3, 6 and 8, which overlaps with the binding modes of dopamine, cocaine and its analogues. Atomistic molecular dynamics simulations further show that, when in complex with 5-MAPB, DAT can exhibit conformational transitions that spontaneously isomerize the transporter into inward-facing state, similarly to that observed in dopamine-bound DAT.
These novel insights, offered by the combination of computational methods of biophysics with neurobiological procedures, provide structural context for NPS at DAT and relate them with their functional properties at DAT as the molecular target of stimulants.
© 2016. The attached document (embargoed until 24/11/2017) is an author produced version of a paper uploaded in accordance with the publisher’s self- archiving policy. The final published version (version of record) is available online at http://dx.doi.org/10.1016/j.pnpbp.2016.11.004. Some minor differences between this version and the final published version may remain. We suggest you refer to the final published version should you wish to cite from it.
We evaluated the binding of 1-(1-benzofuran-5-yl)-N-methylpropan-2-amine (5-MAPB) to rat striatal DAT by means of quantitative autoradiography with [125I]RTI-121, and the effects of 5-MAPB on electrically-evoked dopamine efflux by fast-cyclic voltammetry in rat brain slices. 5-MAPB displaced [125I]RTI-121 in a concentration-dependent manner, with significant effects at 10 and 30 μM. The voltammetry data suggest that 5-MAPB reduces the rate of dopamine reuptake; while the peak dopamine efflux was not increased, the area under the curve was augmented. 5-MAPB can also cause reverse dopamine transport consistent with stimulant properties, more similar to amphetamine than cocaine. Molecular modelling and docking studies compared the binding site of DAT in complex with 5-MAPB to dopamine, amphetamine, 5-APB, MDMA, cocaine and RTI-121. This structural comparison reveals a binding mode for 5-MAPB found in the primary binding (S1) site, central to transmembrane domains 1, 3, 6 and 8, which overlaps with the binding modes of dopamine, cocaine and its analogues. Atomistic molecular dynamics simulations further show that, when in complex with 5-MAPB, DAT can exhibit conformational transitions that spontaneously isomerize the transporter into inward-facing state, similarly to that observed in dopamine-bound DAT.
These novel insights, offered by the combination of computational methods of biophysics with neurobiological procedures, provide structural context for NPS at DAT and relate them with their functional properties at DAT as the molecular target of stimulants.
© 2016. The attached document (embargoed until 24/11/2017) is an author produced version of a paper uploaded in accordance with the publisher’s self- archiving policy. The final published version (version of record) is available online at http://dx.doi.org/10.1016/j.pnpbp.2016.11.004. Some minor differences between this version and the final published version may remain. We suggest you refer to the final published version should you wish to cite from it.
Original language | English |
---|---|
Pages (from-to) | 1-9 |
Journal | Progress in Neuropsychopharmacology & Biological Psychiatry |
Volume | 75 |
Early online date | 24 Nov 2016 |
DOIs | |
Publication status | Published - 3 Apr 2017 |
Keywords
- Addiction; Autoradiography; Dopamine transporter; Legal highs; Molecular modelling; Voltammetry
Profiles
-
Michelle Sahai
- School of Life and Health Sciences - Honorary Research Fellow
- Centre for Integrated Research in Life and Health Sciences - Honorary Research Fellow
Person