TY - JOUR
T1 - Multivariate pattern classification reveals differential brain activation during emotional processing in individuals with psychosis proneness
AU - Modinos, Gemma
AU - Petterson-Yeo, William
AU - Allen, Paul
AU - McGuire, Philip
AU - Aleman, Andre
AU - Mechelli, Andrea
PY - 2012
Y1 - 2012
N2 - Among the general population, individuals with subthreshold psychotic-like experiences, or psychosis proneness (PP), can be psychometrically identified and are thought to have a 10-fold increased risk of psychosis. They also show impairments in measures of emotional functioning parallel to schizophrenia. Whilst previous studies have revealed altered brain activation in patients with schizophrenia during emotional processing, it is unclear whether these alterations are also expressed in individuals with high PP. Here we used Support Vector Machine (SVM) to perform multivariate pattern classification based on brain activation during emotional processing in 20 individuals with high PP and 20 comparison subjects (low PP). In addition, we performed a standard univariate analysis based on the General Linear Model (GLM) on the same data for comparison. The experimental task involved passively viewing negative and neutral pictures from the International Affective Picture System (lAPS). SVM allowed classification of the two groups with statistically significant accuracy (p = 0.017) and identified group differences within an emotional circuitry including the amygdala, insula, anterior cingulate and medial prefrontal cortex. In contrast, the standard univariate analysis did not detect any significant between-group differences. Our results reveal a distributed and subtle set of alterations in brain function within the emotional circuitry of individuals with high PP, providing neurobiological support for the notion of dysfunctional emotional circuitry in this group. In addition, these alterations are best detected using a multivariate approach rather than standard univariate methods. Further application of this approach may aid in characterising people at clinical and genetic risk of developing psychosis. (C) 2011 Elsevier Inc. All rights reserved.
AB - Among the general population, individuals with subthreshold psychotic-like experiences, or psychosis proneness (PP), can be psychometrically identified and are thought to have a 10-fold increased risk of psychosis. They also show impairments in measures of emotional functioning parallel to schizophrenia. Whilst previous studies have revealed altered brain activation in patients with schizophrenia during emotional processing, it is unclear whether these alterations are also expressed in individuals with high PP. Here we used Support Vector Machine (SVM) to perform multivariate pattern classification based on brain activation during emotional processing in 20 individuals with high PP and 20 comparison subjects (low PP). In addition, we performed a standard univariate analysis based on the General Linear Model (GLM) on the same data for comparison. The experimental task involved passively viewing negative and neutral pictures from the International Affective Picture System (lAPS). SVM allowed classification of the two groups with statistically significant accuracy (p = 0.017) and identified group differences within an emotional circuitry including the amygdala, insula, anterior cingulate and medial prefrontal cortex. In contrast, the standard univariate analysis did not detect any significant between-group differences. Our results reveal a distributed and subtle set of alterations in brain function within the emotional circuitry of individuals with high PP, providing neurobiological support for the notion of dysfunctional emotional circuitry in this group. In addition, these alterations are best detected using a multivariate approach rather than standard univariate methods. Further application of this approach may aid in characterising people at clinical and genetic risk of developing psychosis. (C) 2011 Elsevier Inc. All rights reserved.
U2 - 10.1016/j.neuroimage.2011.10.048
DO - 10.1016/j.neuroimage.2011.10.048
M3 - Article
SN - 1053-8119
VL - 59
SP - 3033
EP - 3041
JO - NeuroImage
JF - NeuroImage
IS - 3
ER -