Nitrogen and carbon status are integrated at the transcriptional level by the nitrogen regulator NtrC in vivo

Joerg Schumacher, Volker Behrends, Zhensheng Pan, Dan R. Brown, Franziska Heydenreich, Matthew R. Lewis, Mark H. Bennett, Banafsheh Razzaghi, Michal Komorowski, Mauricio Barahona, Michael P. H. Stumpf, Sivaramesh Wigneshweraraj, Jacob G. Bundy, Martin Buck

Research output: Contribution to journalArticlepeer-review


Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions, the intracellular glutamine concentration is not limiting but 5.6-fold higher than in ammonium-replete conditions; in addition, α-ketoglutarate concentrations are elevated. We address this glutamine paradox from a systems perspective. We show that the dominant role of NtrC is to regulate glnA transcription and its own expression, indicating that the glutamine paradox is not due to NtrC-independent gene regulation. The absolute intracellular NtrC and GS concentrations reveal molecular control parameters, where NtrC-specific activities were highest in nitrogen-starved cells, while under glutamine growth, NtrC showed intermediate specific activity. We propose an in vivo model in which α-ketoglutarate can derepress nitrogen regulation despite nitrogen sufficiency.
IMPORTANCE: Nitrogen is the most important nutrient for cell growth after carbon, and its metabolism is coordinated at the metabolic, transcriptional, and protein levels. We show that growth on glutamine as a sole nitrogen source, commonly assumed to be nitrogen limiting and used as such as a model system for nitrogen limitation, is in fact nitrogen replete. Our integrative quantitative analysis of key molecules involved in nitrogen assimilation and regulation reveal that glutamine is not necessarily the dominant molecule signaling nitrogen sufficiency and that α-ketoglutarate may play a more important role in signaling nitrogen status. NtrB/NtrC integrates α-ketoglutarate and glutamine signaling--sensed by the UTase (glnD) and PII (glnB), respectively--and regulates the nitrogen response through self-regulated expression and phosphorylation-dependent activation of the nitrogen (ntr) regulon. Our findings support α-ketoglutarate acting as a global regulatory metabolite
Original languageEnglish
Pages (from-to)e00881-13
Issue number6
Publication statusPublished - 2013

Cite this