Violation of the Craniocentricity Principle for Vestibularly Evoked Balance Responses under Conditions of Anisotropic Stability

Omar S Mian, Brian L Day

Research output: Contribution to journalArticlepeer-review


The balance response direction to electrically evoked vestibular perturbation is closely tied to head orientation. Such craniocentric response organization is expected of a simple error correction process. Here we ask whether this is maintained when the body is made more stable, but with the stability being greater in one direction than another. Since it is known that vestibularly evoked balance responses become smaller as body stability increases, the following two outcomes are possible: (1) response magnitude is attenuated, but with craniocentricity maintained; and (2) anisotropy of stability is considered such that components of the response are differentially attenuated, which would violate a craniocentric organizing principle. We tested these alternatives by measuring the direction of balance responses to electrical vestibular stimulation across a range of head orientations and stance widths in healthy humans. With feet together, the response was highly craniocentric. However, when stance width was increased so that the body was more stable in the frontal plane, response direction became biased toward the sagittal direction. This resulted in a nonlinear relationship between head orientation and response direction. While stance width changes the mechanical state of the body, the effect was also present when lateral light touch was used to produce anisotropy in stability, demonstrating that a significantly altered mechanical state was not crucial. We conclude that the balance system does not simply act according to the direction of vestibular input. Instead, it appears to assign greater relevance to components of vestibular input acting in the plane of lesser body stability than the plane of greater body stability, and acts accordingly.

Original languageEnglish
Pages (from-to)7696-7703
Number of pages8
Issue number22
Publication statusPublished - 28 May 2014


  • Adolescent
  • Adult
  • Anisotropy
  • Evoked Potentials, Somatosensory
  • Female
  • Humans
  • Male
  • Postural Balance
  • Vestibule, Labyrinth
  • Young Adult

Cite this