Abstract
The balance response direction to electrically evoked vestibular perturbation is closely tied to head orientation. Such craniocentric response organization is expected of a simple error correction process. Here we ask whether this is maintained when the body is made more stable, but with the stability being greater in one direction than another. Since it is known that vestibularly evoked balance responses become smaller as body stability increases, the following two outcomes are possible: (1) response magnitude is attenuated, but with craniocentricity maintained; and (2) anisotropy of stability is considered such that components of the response are differentially attenuated, which would violate a craniocentric organizing principle. We tested these alternatives by measuring the direction of balance responses to electrical vestibular stimulation across a range of head orientations and stance widths in healthy humans. With feet together, the response was highly craniocentric. However, when stance width was increased so that the body was more stable in the frontal plane, response direction became biased toward the sagittal direction. This resulted in a nonlinear relationship between head orientation and response direction. While stance width changes the mechanical state of the body, the effect was also present when lateral light touch was used to produce anisotropy in stability, demonstrating that a significantly altered mechanical state was not crucial. We conclude that the balance system does not simply act according to the direction of vestibular input. Instead, it appears to assign greater relevance to components of vestibular input acting in the plane of lesser body stability than the plane of greater body stability, and acts accordingly.
Original language | English |
---|---|
Pages (from-to) | 7696-7703 |
Number of pages | 8 |
Journal | JOURNAL OF NEUROSCIENCE |
Volume | 34 |
Issue number | 22 |
DOIs | |
Publication status | Published - 28 May 2014 |
Keywords
- Adolescent
- Adult
- Anisotropy
- Evoked Potentials, Somatosensory
- Female
- Humans
- Male
- Postural Balance
- Vestibule, Labyrinth
- Young Adult
Profiles
-
Omar Mian
- School of Life and Health Sciences - Honorary Research Fellow
- Centre for Integrated Research in Life and Health Sciences - Honorary Research Fellow
Person