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 12 

We understand little about the energetic costs of flight in free-ranging birds; in part since current 13 

techniques for estimating flight energetics in the wild are limited. Accelerometry is known to estimate 14 

energy expenditure through body movement in terrestrial animals, once calibrated using a treadmill 15 

with chamber respirometry. The flight equivalent, a wind tunnel with mask respirometry, is particularly 16 

difficult to instigate, and has not been applied to calibrate accelerometry. We take the first steps in 17 

exploring a novel method for calibrating accelerometers with flight energy expenditure. We collected 18 

accelerometry data for Harris’s Hawks Parabuteo unicinctus flying to varying heights up to 4.1 m over 19 

a small horizontal distance; the mechanical energy expended to gain height can be estimated from 20 

physical first principles. The relationship between accelerometry and mechanical energy expenditure 21 

was strong, and while a simple wing flapping model confirmed that accelerometry is sensitive to both 22 

changes in wing beat amplitude and frequency, the relationship was explained predominately by 23 

changes in wing beat frequency, and less so by changes in amplitude. Our study provides initial, positive 24 

evidence that accelerometry can be calibrated with body power using climbing flights, potentially 25 

providing a basis for estimating flapping flight metabolic rate at least in situations of altitude gain. 26 

Keywords: Harris Hawk, dynamic body acceleration, energetics, wing beat frequency, wing beat 27 

amplitude  28 

 29 

Volant birds can travel further and faster than animals employing other modes of locomotion. The 30 

ability to fly underpins much of avian foraging and migratory behaviour, yet powered flight is 31 

considered to require considerable energy expenditure (Schmidt-Nielsen 1972, Nudds and Bryant 2000, 32 

Piersma 2011). Quantifying those costs is therefore essential to our understanding of bird biology. 33 

Presently, however, we know very little about the true costs of flapping flight in unrestrained birds in 34 
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the wild (Elliott 2016, Hicks et al. 2017), particularly beyond cases of steady-state flight (Pennycuick 35 

2008). 36 

While wind tunnel experiments have proved invaluable for interrogating various aspects of flight 37 

biology (Engel et al. 2010), training birds to maintain stationary flight in a current of air (Ward et al. 38 

2002, Sapir and Dudley 2012)  is difficult (Welch 2011), and habituating them to wearing a respirometry 39 

mask at the same time in order to estimate energy expenditure is an additional problem. Furthermore, 40 

the veracity of measurements taken during wind tunnel respirometry has been questioned (Engel et al. 41 

2010). The mask and associated tubing imposes additional weight and drag on the bird, the wind tunnel 42 

can elicit boundary effects (Rayner 1994), and captive animals are potentially less physically fit than 43 

their wild contemporaries (Schwitzer and Kaumanns 2001). These issues may explain inconsistencies 44 

between wind tunnel estimates of flight effort compared to field-based estimates (Liechti and Bruderer 45 

2002). For example, the heart rate of wild geese during flight tends to be low (Bishop et al. 2015) 46 

compared to that of geese during wind tunnel experiments (Ward et al. 2002). Furthermore, the tethering 47 

effect of the mask limits the bird’s freedom of movement, which may also serve to increase its energy 48 

costs, and restricts investigation to scenarios of steady state, uni-directional flight. Other approaches for 49 

measuring the energetic costs of flight include using energy models in conjunction with high-speed 50 

kinematics (Askew and Ellerby 2007), but this is a further example of laboratory measurements, which 51 

may yield quite different results to free flying birds in their natural environment. Many ecological and 52 

behavioural questions can only be resolved in a natural setting. 53 

One of the most promising approaches for investigating energy expenditure during flight in wild 54 

animals is to attach a small data logger to the subject animal that records a proxy of energy expenditure. 55 

Calibrating the proxy with energy expenditure in the laboratory enables quantified estimates of energy 56 

expenditure to be calculated from measures of the proxy recorded in the field (Sapir et al. 2010). For 57 

example, calibrations between heart rate and energy expenditure obtained for two species of geese 58 

(Ward et al. 2002) were applied to heart rate recordings of Bar-headed Geese Anser indicus on migration 59 

from Mongolia to India through the Himalayas, estimating energetic savings for these birds from flying 60 

close to the ground compared to ascending progressively across the mountain range (Bishop et al. 2015). 61 

However, applying such ‘biologging’ to quantify energy expenditure in birds while flying is in its 62 

infancy (Guillemette et al. 2012, Elliott et al. 2013, Elliott et al. 2014, Weimerskirch et al. 2016) with 63 

few proxy calibrations available. This is, at least in part, because calibrating energetics proxies for flying 64 

birds is very difficult, given the logistics, for example, of wind tunnel respirometry.  65 

Accelerometers are used as biologging devices that record the acceleration of the body of the animal. 66 

Both in theory (Gleiss et al. 2011) and in practice (Wilson et al. 2006), recordings from accelerometers 67 

attached to a central point on an animal’s body relate well to the levels of movement of that animal, and 68 

in turn its energy expenditure during periods of activity. A now commonly used derivative of 69 



accelerometry data used as a proxy for energy expenditure is termed dynamic body acceleration (DBA) 70 

(Halsey et al. 2011, Qasem et al. 2012). During flapping flight, acceleration of the animal’s body, and 71 

thus DBA, is affected by variation in flapping behaviour (Halsey et al. 2009, Spivey and Bishop 2013, 72 

Bishop et al. 2015, Weimerskirch et al. 2016) which is described predominantly by wing beat 73 

frequency, wing beat amplitude or a combination of the two (Rayner 1999). Strong relationships 74 

between rate of energy expenditure and DBA have been found in a diversity of cursorial birds such as 75 

Red Jungefowl (chickens) Gallus gallus, Great Cormorants Phalacrocorax carbo and Macaroni 76 

Penguins Eudyptes chrysolophus (Wilson et al. 2006, Green et al. 2009, Halsey et al. 2009). Yet to date 77 

there has been no empirical calibration of accelerometry with energy expenditure for birds during flight. 78 

The three-dimensional nature of bird flight means that the relationship between DBA and energy 79 

expenditure cannot be easily predicted from simple theoretical considerations: birds could switch 80 

between different flapping modes as they fly on different slopes, leading to difficult to predict effects 81 

on DBA. Our study takes the first steps to address this. We provide the first experimental relationship 82 

between accelerometry (as DBA) and rate of energy expenditure (as climb power is associated with the 83 

gain in potential energy) in a volant animal, by using variation in climbing slope during free flights to 84 

enable climb power to be estimated from physical first principles. These experiments also enabled us 85 

to investigate what aspects of wing kinematics (e.g. increased flapping frequency or flapping amplitude) 86 

drive power output in this particular flight scenario and how effectively DBA can describe these 87 

kinematics.  88 

We fitted Harris’s Hawks Parabuteo unicinctus with accelerometers and encouraged them to undertake 89 

short flapping flights that varied in the height gained between the two falconers. The extra energy (climb 90 

power) expended by the bird in achieving these various heights was calculated from physical first 91 

principles as the product of the mass of the bird, gravitational acceleration, and the rate of increase in 92 

height (Askew et al. 2001, Berg and Biewener 2008). This enabled us to test for and investigate 93 

relationships between energy expenditure (as climb power) and DBA in birds without heavy logistical 94 

burdens, outside the laboratory, flying freely and without restricting the animals such as obliging them 95 

to wear a respirometry mask. We further explored our findings by investigating the relationships 96 

between DBA and bird kinematics both empirically and using simple wing flapping models based on 97 

sinusoidal waves (Spivey and Bishop 2013); the modelling helps to clarify some common 98 

misunderstandings about how cyclical body movement impacts measures of body acceleration. 99 

Methods 100 

Experimental set-up 101 

We collected data from five (one male and four female) Harris’s Hawks weighing between 0.84 – 1.03 102 

kg, at the Hawk Conservancy Trust (HCT) in Andover (UK). Data were collected in the summer and 103 

autumn of 2016, under approval of the ethics committee of the University of Roehampton. 104 



We encouraged the hawks to fly to six different heights (range: 0 – 4.1 m, Figure 1 and  105 

From the height gained by a hawk during each flight (  106 



Table 1), along with the duration of the flight and the mass of the bird, mean climb power during the 107 

flight can be calculated by: 108 

Climb power (Js-1) = 
mass (kg)×gravitational acceleration (9.81ms-2)×height gained (m) 

flight duration (s)
 109 

  110 



Table 1) while covering only a small horizontal distance (4.1 m). Lured by morsels of chicken (weighing 111 

1 - 2 g), the birds flew back and forth from a falconer on the ground to a falconer standing at different 112 

heights on flights of steps up to a balcony. Their body mass therefore increased slightly with each flight; 113 

we accounted for this in our analyses by assuming that each piece of food weighed 1.5 g. Each height 114 

condition was randomised, and repeated approximately three times per bird. Wind speed was measured 115 

with an anemometer and never exceeded 0.3 m/s so we considered wind to be negligible for our 116 

experiment.  117 

We placed a small accelerometer (9.3 g, ~1% of body mass; GCDC USB accelerometer X16-4) on the 118 

lower section of the Harris’s Hawk’s back, towards the rump where it would not interfere with wing 119 

movement (Figure 2). The accelerometer was set to record at 50 Hz (around 10-fold the wing beat 120 

frequency of Harris’s hawks).  Similar to some previous studies of bird flight power and kinematics ( 121 

Pennycuick et al. 1989, Askew et al. 2001, Berg and Biewener 2008), flight durations were short, 122 

averaging 1.7 s (± one sd: 0.3).  123 

Video recordings 124 

We video recorded the flight of the birds with a Nikon Coolpix AW110 camera, hand-held by a 125 

researcher standing on the ground, perpendicular to the bird’s trajectory. The video was used 126 

subsequently to check flight durations and times, synchronise the flight times with the accelerometry 127 

data, and note any aberrant behaviours by the birds during the flights (e.g. bird not flying to the target); 128 

those flights (n = 6 from three birds) were removed prior to analysis. We used the programme IGOR 129 

Pro (Wavemetrics Inc., Portland, OR, USA, 2000, version 6.3.5) with the Ethographer package 130 

(Sakamoto et al. 2009) in concert with the video footage, to extract the acceleration traces representing 131 

each flight. 132 

Estimating climb power 133 

From the height gained by a hawk during each flight (  134 



Table 1), along with the duration of the flight and the mass of the bird, mean climb power during the 135 

flight can be calculated by: 136 

Climb power (Js-1) = 
mass (kg)×gravitational acceleration (9.81ms-2)×height gained (m) 

flight duration (s)
 137 

  138 



Table 1. Height gain and flight distance represented by each experimental condition.  Average height 139 

varied slightly within each condition due to slight variations in the stance adopted by the two falconers. 140 

Flight 

condition 

Mean height gain (and 

range) (m) 

Mean flight 

distance (and range) 

(m) 

Mean flight duration 

and range (s) 

# Birds (and 

# flights) 

H1 0 4.1 1.6 (1.2 – 2.2) 5 (14) 

H2 1.3 (1.2 – 1.6) 4.3 (4.3 – 4.4) 1.6 (1.2 – 2.4) 5 (17) 

H3 1.8 (1.6 – 2.0) 4.5 (4.4 – 4.6) 1.6 (1.3 – 2.6) 5 (19) 

H4 2.5 (2.3 – 2.9) 4.8 (4.7 – 5.0) 1.7 (1.3 – 2.2) 4 (13) 

H5 3.8 (3.5 – 4.2) 5.6 (5.4 – 5.9) 1.9 (1.5 – 2.5) 4 (12) 

H6 4.1 (3.9 – 4.3) 5.8 (5.7 – 5.9) 2.1 (1.7 – 2.5) 5 (13) 

 141 

Accelerometry data analysis 142 

Accelerometers measure both dynamic (body movement) and static acceleration (gravity) (Gleiss et al. 143 

2011), and the tag model we used recorded acceleration along three orthogonal axes (heave, surge and 144 

sway) measured in absolute g (1 g = 9.81 m s-2). Thus, the acceleration of the bird’s body due to the 145 

movement of its wings could be determined by recording the acceleration experienced by the data logger 146 

attached to a fixed point on the body, such as the lower back, and then from those data by extracting an 147 

approximation of absolute g due only to dynamic acceleration (Gleiss et al. 2011, Halsey et al. 2011). 148 

This extraction was achieved in our study by removing an approximation of the static acceleration 149 

calculated as the mean of each accelerometry axis over the duration of the flight, similar to employing 150 

a running mean (Shepard et al. 2008). Preliminary analysis showed that we found a stable DBA within 151 

the average flight duration of the hawk. The resulting absolute dynamic values were then summed to 152 

produce the derivation termed ‘overall dynamic body acceleration’, hereafter, DBA.  153 

Calculating flapping kinematics from the accelerometry data 154 

All the flapping analyses were implemented in Matlab v.7.9.0.529. We projected the accelerometer 155 

signal along one dimension. This dimension was defined as the major flapping axis of the Harris’s 156 

Hawk, determined independently for each flight through principal component analysis of the three-157 

dimensional accelerometer recordings. Next, we applied a cubic spline interpolation of this 158 

accelerometer signal with a temporal resolution of 250 fixes per second (5 times the original resolution 159 

of the data). This step was included because the temporal resolution for detecting wing beat frequency 160 

is limited by the temporal discretisation of the data, however the accelerometer signal itself carries 161 

sufficient information for a much more accurate estimation, because the signal is repeated over multiple 162 

flapping cycles. This information was integrated in the subsequent steps of analysis. 163 



We estimated wing beat frequency by computing a temporal autocorrelation of the interpolated 164 

accelerometer signal and by detecting the time lag that corresponded to the second highest peak in the 165 

autocorrelation function (the first highest peak is the trivial autocorrelation maximum at zero delay). 166 

This time lag gave the time period T of one flapping cycle, the wing beat frequency being 1/T. In four 167 

flights of one bird, the second highest peak in the autocorrelation function was of similar height to the 168 

third highest peak and its position indicated incorrect values of wing beat frequency (higher than 8 Hz 169 

or lower than 4 Hz, clearly different from what we could observe in the video footage).  For these four 170 

flights, we manually forced selection of the third highest peak. 171 

Acceleration amplitude along the major flapping axis is a measure of the amplitude of acceleration of 172 

the bird’s body (Usherwood et al. 2011, Spivey and Bishop 2013), which in turn is assumed to result 173 

predominantly from wing flapping. Acceleration amplitude was estimated directly from the local 174 

maxima and local minima of the interpolated accelerometer signal. As the accelerometer signal had 175 

multiple local maxima and minima, some of which were determined by noise (or by higher harmonics 176 

of wing movements), we limited the analysis to local maxima and minima that were also global maxima 177 

or minima within a time window of 70% of one flapping cycle. As an aggregate measure of amplitude 178 

of acceleration during the flap cycles over the entire flight, we kept the value that corresponded to the 179 

80th percentile of the absolute amplitude of local maxima and minima, under the assumption that this 180 

would be only minimally sensitive to extreme variations of amplitude associated with take-off and 181 

landing. Acceleration amplitude was used to estimate the movement amplitude of the bird’s body 182 

(hereafter termed ‘body movement amplitude’, cm) by considering the body to fluctuate over time 183 

following a pure sine wave (Spivey and Bishop 2013). Body movement amplitude is assumed to be 184 

proportional to wing beat amplitude and thus an indirect measure of it (Hedrick et al. 2004, Usherwood 185 

et al. 2011, Taylor et al. 2017) (supplementary material includes a Matlab code to calculate the wing 186 

beat amplitude and body movement amplitude).  187 

From the measured values of DBA we calculated an estimated measure of ‘body power’, or the power 188 

produced by flapping. Under relatively well supported assumptions of sinusoidal flapping, body power 189 

is proportional to the amplitude of the accelerometer signal and inversely proportional to the squared 190 

wing-beat frequency (see for instance Spivey and Bishop 2013), so here we defined body power simply 191 

as body power =  
𝐷𝐵𝐴2

𝑊𝐵𝐹
 (this is analogous to other definitions of body power based on RMS (Root Mean 192 

Square) contrast of accelerometer signal: RMS contrast and DBA are both proportional to the amplitude 193 

of the sinusoidal flapping signal, body power =  
𝑅𝑀𝑆2

𝑊𝐵𝐹
) 194 

Statistical analyses 195 

Statistical analyses focussed on general linear models implemented in the programming environment R 196 

3.4.0 (Team 2013), using the lme4 package. In different models, DBA (g), climb power (Js-1) and climb 197 



energy per wingbeat (J) were the outcome variables, with either body movement amplitude (cm), wing 198 

beat frequency (Hz), climb power or body power (Js-1) as single predictor variables. All models included 199 

bird ID as a random factor, allowing slope intercept and gradient to differ for each bird. We then 200 

performed a cross-validation analysis to quantify the predictive validity of our model calibrating DBA 201 

with climb power. Using a jack knife approach, we simulated the scenario of estimating climb power 202 

from measures of DBA obtained from a new individual. We excluded one bird from the dataset in 203 

generating the relationship between climb power and DBA, and then used that relationship to compare 204 

climb power against DBA-predicted climb power, for 10 randomly selected values of DBA. Mean 205 

absolute and mean algebraic percentage error was calculated for these 10 samples. This process was 206 

repeated for all five birds and overall means were then calculated. 207 

 R2 values for mixed effects models were calculated following the method of Nakagawa and Schielzeth 208 

(2013) using the MuMIn package. Because the p value is typically highly imprecise, here we consider 209 

it to be only a tentative indication of the strength of evidence for observed patterns in the data ( Fisher 210 

1959, Boos and Stefanski 2011, Halsey et al. 2015). To enhance interpretation of the p value, we have 211 

supplemented reporting the p values with further information following the three key recommendations 212 

of the American Statistical Association (Wasserstein and Lazar 2016), further explained in Altman and 213 

Krzywinski (2017), which enable assessment of the strength of evidence for the falsehood of the null 214 

hypothesis. First, we provided estimates of the false discovery rates associated with each null hypothesis 215 

– the expected proportion of the rejected null hypotheses that are false rejections. These were calculated 216 

based on predicted statistical power of 80% and the heuristic for low-throughput testing recommended 217 

by Altman and Krzywinski (2017) to predict the proportion of tests that are truly null: 50% for primary 218 

research questions and 75% for secondary research questions. Second, we calculated the upper bound 219 

for the Bayes factor ( Sellke et al. 2001, Boos and Stefanski 2011) – the largest possible Bayes factor 220 

over any (reasonable) choice of the prior distribution for the alternative hypothesis. The value represents 221 

the ratio of average likelihoods under the alternative and null hypotheses, i.e. a quantification of the 222 

extent to which the alternative hypothesis (that the effect size is not null, i.e. not 0), is more likely. 223 

Third, all our data figures include 95% confidence intervals, both standard and bootstrapped (Loftus 224 

1993, Lavine 2014). 225 

Results 226 

Empirical data analysis 227 

Five Harris's Hawks undertook a total of 88 flights that were included in the analyses. Cleveland plots 228 

indicated no clear outliers in the data set. The observations:covariates ratio was never lower than 24 for 229 

the models constructed, which is acceptable (Zuur et al. 2013). There was no relationship between the 230 

Pearson residuals and the fitted values from this study’s main model: DBA ~ climb power + [bird_ID]. 231 

None of the Cook’s distances were outliers. The relationship between observed data and fitted data for 232 



this model was approximately unitary. Plots of Pearson residuals against each model covariate in this 233 

study’s analyses did not indicate any obvious non-linearity (48).  234 

To generate relationships between rate of energy expenditure and DBA, we plotted mean DBA against 235 

estimated climb power (Figure 3); the plot indicated that they correlate positively. The R2 values for 236 

climb power regressed against DBA for each bird separately ranged between 0.58 and 0.80. A linear 237 

mixed model to predict DBA from climb power, including bird identity as a random factor, indicated a 238 

strong relationship (Table 2). To quantify the predictive accuracy of the relationship between climb 239 

power and DBA, we performed a cross-validation analysis. Overall mean absolute error was 19.22 ± 240 

1.16% (range of mean absolute error: 0.22 – 68.08%), while overall mean algebraic error was -4.00 ± 241 

1.96% (range of mean algebraic error: -68.08 – 42.41%). 242 

Consequently, we then explored the relationships between key aspects of wing kinematics and climb 243 

power, and how effectively DBA described those wing kinematics (Table 2). The flight kinematic 244 

variables we investigated at this point were body movement amplitude (a proxy for wing beat 245 

amplitude) and wing beat frequency. DBA was related statistically significantly but not strongly to body 246 

movement amplitude (Figure 4A), and related more strongly to wing beat frequency (Figure 4B). 247 

Similarly, climbing power was related statistically significantly but not strongly to body movement 248 

amplitude (Figure 4C), and more strongly to wing beat frequency (Figure 4D). Consequently, there was 249 

a fairly strong positive relationship between climb energy per wing beat and climb power (Figure 4E). 250 

Finally, climb power was regressed against 
𝐷𝐵𝐴2

𝑊𝐵𝐹
, which is the theoretical relationship derived by Spivey 251 

and Bishop (2013) for body power  perceived by the body-mounted accelerometer (Figure 4F), but the 252 

relationship had a weaker correlation (marginal R2) than that for DBA, or even wing beat frequency, 253 

alone.  254 

  255 



Table 2. Model outputs, accounting for repeated measures within each bird, investigating the 256 

relationships between dynamic body acceleration (DBA, g), climb power (Js-1), wing beat frequency 257 

(WBF; Hz), body movement amplitude (BMA; cm), climb energy per wingbeat (Energy per wingbeat; 258 

J) and body power (Js-1). Marginal R2 describes the proportion of variance explained by the fixed 259 

factor(s) alone; Conditional R2 describes the proportion of variance explained by both the fixed factor(s) 260 

and the random factor (bird ID). eFDR = estimated false discovery rate. The Bayes factor bound 261 

calculates the upper bound of the Bayes factor based on the reported P value, and indicates the ratio of 262 

the likelihood that the alternative hypothesis is true against the likelihood that the null hypothesis is 263 

true. See the main text for further details. 264 

Associated 

Figure 
Model Slope (± se) Marginal R2 Conditional R2 P value 

eFDR 

(%) 

Bayes factor 

bound 

Figure 3 
DBA ~ climb 

power 
0.092 ± 0.009 0.54 0.64 < 0.001 0.12 53 

Figure 4A DBA ~ BMA 0.28 ± 0.067 0.17 0.17 <0.001 0.37 53 

Figure 4B DBA ~ WBF 1.88 ± 0.27 0.38 0.52 <0.001 0.37 53 

Figure 4C 
Climb power ~ 

BMA 
1.46 ± 0.651 0.06 0.19 0.02 6.98 5 

Figure 4D 
Climb power ~ 

WBF 
17.8 ± 2.0 0.48 0.64 <0.001 0.37 53 

Figure 4E 

Energy per 

wingbeat ~ 

climb power 

0.173 ± 0.012 0.61 0.84 <0.001 0.37 53 

Figure 4F 
Power ~ 

climb power 
6.71 ± 0.727 0.32 0.62 <0.001 0.37 53 

 265 

Modelled data analysis 266 

Superficially, one might conclude that changes in wing beat frequency will not be recognised by 267 

changes in DBA (or related measures such as RMS) because DBA depends only on the amplitude of 268 

the acceleration profile and not its frequency (Fig. 5). The total DBA of a flapping cycle corresponded 269 

to the area shaded in grey in Figure 5a. If the bird produced an identical accelerometer profile, but 270 

flapped at double the frequency (Fig.5b), the total DBA of a flap cycle would now be reduced to one 271 

half the original, but there would now be two identical flapping cycles per unit of time, so that average 272 

DBA calculated across multiple flap cycles would be identical (see the appendix for a proof). 273 

However, it would be wrong to conclude that the profile presented in Figure 5b would result from the 274 

bird increasing its wing beat frequency while maintaining constant wing beat amplitude. There is a 275 

crucial and fundamental distinction to be made between the amplitude of the signal in the recorded 276 

acceleration trace (g) and the amplitude of the bird’s wing flaps (cm). The amplitude of the 277 

accelerometer profile carries information about both the amplitude and the frequency at which the bird 278 

flaps its wings. A larger flapping amplitude for a given wing beat frequency registers higher acceleration 279 



values and, for a given flapping amplitude, a higher wing beat frequency will register higher 280 

acceleration values. Simply put, a flapping wing must speed up and slow down more rapidly if it is 281 

moving further per unit time, or flapping more frequently. Thus, even if inspection of the profile of the 282 

bird’s body movements in cm (in reaction to its wing beats) does not show any change in gain in 283 

response to a change in its wing beat frequency (Figure 6a), DBA derived from an accelerometer 284 

instrumented to the bird’s back should nonetheless recognise this variation in flapping behaviour 285 

(Figure 6b). 286 

 287 

Discussion 288 

During flapping flight, to gain height birds must expend energy. We took advantage of this fact to 289 

generate relationships between the output of an accelerometer and the rate of mechanical energy 290 

expenditure of volant birds by instrumenting the accelerometer to the back of Harris’s Hawks while 291 

they undertook ascending flights. 292 

The relationship between climb power, DBA and wing kinematics 293 

Although our experimental design induced the birds to ascend to different heights and thus expend 294 

different total amounts of energy, this did not ensure that they would vary their mean climb power. 295 

Fortunately, however, climb power did vary, providing variation that might covary with DBA. DBA 296 

derived from the recorded accelerometry data during these flights related to climb power positively and 297 

strongly (Figure 3), characterised by an overall mean absolute prediction error of less than 20%, and 298 

overall mean algebraic error (giving an indication of the predictive error if mean climb power across 299 

multiple birds was estimated) of -4%. This augurs well for the future use of accelerometers to estimate 300 

energy expenditure in volant birds. 301 

Variation in DBA (due to variation in climb power) was explained more by changes in wing beat 302 

frequency (Fig. 4b) than by changes in wing beat amplitude (measured in terms of body movement 303 

amplitude; Figure 4a). The birds’ increase in wing beat frequency to increase power was clear (Fig. 4d) 304 

despite the variation in wing beat frequency being small (across all birds typically ranging from about 305 

4.7 to about 5.8 Hz). Our wing flap models demonstrated that DBA can be sensitive to both changes in 306 

body movement amplitude and wing beat frequency (Fig. 6); it appears that the Harris’s Hawks enacted 307 

relatively small changes in wing beat frequency in order to generate relatively large changes in climb 308 

power. This has been quantified once before, in Bar-headed Geese (Bishop et al. 2015). Small increases 309 

in wing beat frequency might be expected to associate with relatively high power costs given that, for 310 

horizontal steady flight, power requirement should be proportional to wing beat frequency cubed 311 

(Lilienthal 2001). However, the wing beat frequency of the Harris’s Hawks leaves quite a lot of 312 

variation in DBA and climb power unexplained, and a regression of climb energy expended per wing 313 



beat against climb power, while strong, includes a fair amount of variability (Figure 4E). Our wing flap 314 

models indicated that DBA is likely to be somewhat sensitive to changes in wing beat frequency, leaving 315 

the possibility that the birds made other changes to their flight kinematics over and above wing beat 316 

frequency and wing beat amplitude to change their climb power. Similarly, Frigatebirds Fregata spp. 317 

hold wing beat frequency fairly constant yet heart rate per wing beat (a proxy of power output per wing 318 

beat) varies substantially during the course of a flight (Weimerskirch et al. 2016). In both these cases, 319 

one possibility is that the birds change stroke plane angle, as has been reported in pigeons during short, 320 

height-gaining flights where power output per wing beat was higher when the required flight angle (and 321 

hence predicted power) was greater (Berg and Biewener 2008).  322 

The calculated mean maximum climb power exhibited by the Harris’s Hawks during flights in the 323 

present study was about 25 Js-1, which is similar to that reported for 2s climbing flights by the same 324 

species in an earlier study (Pennycuick et al. 1989; their Figure 7). This is, of course, only a part of the 325 

total power costs of flight for the bird, which include muscle contractions of the wings and other body 326 

parts, the costs to overcome drag and basic lift, and basal metabolic rate. For example, during flight a 327 

bird’s basal metabolic rate could constitute 4 to 10% of its total metabolic costs (Nudds and Bryant 328 

2000, Piersma 2011), and flight muscle efficiency is typically less than 20% (Rayner 1999). In reality, 329 

total power during a flight is likely to be many times higher than calculated climb power, and could 330 

vary with mechanical power (Rayner 1999, Pennycuick 2008, Engel et al. 2010). The gross energy costs 331 

for a human to jump horizontally is around 8-fold greater than the energy expenditure calculated from 332 

physical first principles (Halsey et al. 2016). Similarly, the gross energy costs to ascend and descend a 333 

ladder are around 13-fold greater (Halsey et al. 2016). Nudds and Bryant (2000) reported strong inter-334 

specific correlations between gross power output and body mass during flight in birds based on a 335 

literature review of empirical studies. For short flights, their relationship predicted gross power to be 336 

250 J s-1 for a 1 kg bird, which is about 10 times the maximum mean climb power exhibited by the 337 

hawks in the current study. It should be borne in mind that shorter flights are particularly energetically 338 

demanding, due to take-off costs (Nudds and Bryant 2000) and the higher power costs associated with 339 

slower flight speeds (Engel et al. 2010). Relationships between DBA and climb power could be a 340 

valuable platform for estimating flight metabolic rate as our understanding of a bird’s internal power 341 

costs becomes clearer, and even without estimates of internal power costs, such relationships should 342 

reflect  relative changes in energy expenditure. 343 

The precise mathematical relationship between amplitude of body movement and accelerometer signal 344 

can be derived as follows. Consider the case of a bird which has flapping described by a pure sine wave, 345 

such that the z position of its body (to which the accelerometer is attached) fluctuates over time from a 346 

minimum height -B to a maximum height +B, with period T. In this case we have 347 



z(t) = Bsin wt( )  where we used w =
2p

T
 to represent the angular velocity and simplify the notation. 348 

The accelerometer does not directly record the bird’s body position at any given time t, z(t), but simply 349 

its acceleration, that is, the second derivative of body position. Indicating this acceleration with a capital 350 

Z(t) we have: 351 

Z(t) =
d2z

dt2
= Bw 2 sin wt( )  352 

Importantly, the accelerometer profile describes a sine wave, with the same period or frequency as the 353 

body (the sin(ωt) part is identical in the two equations), but where the amplitude has now changed from 354 

B (a function of body movement amplitude only) to Bω2 (a function of both body movement amplitude 355 

and wing beat frequency). 356 

Under these assumptions, we can directly calculate the amplitude of body movements (cm) from the 357 

amplitude and frequency of flapping recorded by the accelerometer. For example, in our data we have 358 

typical values of accelerometer amplitude A ≈ 5 g, or A = 5 x 9.81 ms-2, and T ≈ 0.2 s, from which ω = 359 

2 x π / 0.2 s-1 and B = A/ω2 = 5 x 9.81 / (2 x π / 0.2)2 m = 0.05 m = 5 cm. (See also Spivey and Bishop 360 

2013 for a more accurate and complete analysis of the sinusoidal model).  361 

Real birds are unlikely to flap with a perfect sinusoidal profile. However, as long as the flapping profile 362 

is periodic, it can be described as the sum of multiple sine functions by Fourier series approximation 363 

and the same mathematical reasoning above holds independently for each of the harmonics.  364 

Improving the DBA-power relationships 365 

Our experiments included sources of potential error that could increase noise in the relationships 366 

reported. Defining and discerning the start and end of each flight is an imperfect endeavour, resulting 367 

in some degree of inconsistency and inaccuracy in measuring flight duration and selecting the associated 368 

accelerometry trace. The exact height gained by a bird was also subject to error due to variation within 369 

each height condition of the exact body postures and hand placements of the falconers, though most of 370 

this variation was accounted for by inspecting the video footage. Because of the short duration of the 371 

flights, variation in how take-off and landing was incorporated into calculations for each flight could 372 

instigate considerable noise to the reported relationships. We investigated whether removing the start 373 

and end of the accelerometry trace for each flight improved the relationship specifically between DBA 374 

and climb power. We progressively shortened the analysed flights by 0.1 s intervals at both ends 375 

simultaneously (up to 0.3 s at each end), and found that this tended to slightly weaken the relationship. 376 

This process therefore provided no evidence that our assessment of the flight start- and end-points were 377 

inaccurate. If the birds could be trained to undertake flights incorporating greater height gain while 378 

maintaining the short horizontal flight distance, this might serve to improve the DBA-power 379 



relationship, unless for extended flights of this type the birds choose to maintain a more consistent 380 

power output between height conditions. We were able to position the logger on the back at a consistent 381 

point within and between individual birds, which is important to reduce noise-based variation in the 382 

relationships between climb power, DBA and flight kinematics between birds. The results of the present 383 

study have confirmed that DBA depends partly on body movement amplitude (Sapir et al. 2010, Bishop 384 

et al. 2015), which in turn will depend on logger positioning since differing locations may influence the 385 

degree of oscillation experienced by the logger. Thus, it is possible that certain logger positions return 386 

stronger predictive relationships between climb power and DBA or body movement amplitude than 387 

others (Halsey et al. 2008). 388 

Our data indicate considerable variation in the relationship between DBA and climb power among 389 

individuals (Figure 3). Such variation in energy-proxy relationships among individuals is typical e.g. 390 

(Halsey and White 2010, Green 2011, Halsey et al. 2011), and is ripe for investigation with detailed 391 

kinematic data. Inter-individual variability can be recognised statistically in the errors associated with 392 

estimates of energy expenditure at the group level (Green et al. 2003, Green 2011, Lyons et al. 2013), 393 

where mean values for the group tend to be accurate (e.g. Halsey et al. 2007). 394 

The future for accelerometry to investigate flight energetics 395 

We need ways to estimate energy expenditure in free-flying birds, and other volant animals, at a high 396 

resolution, and non-invasive instrumentation of data loggers is currently the most tractable option 397 

(though surgical implants may be preferential for long term deployments (White et al. 2013)). 398 

Researchers have only just begun to apply accelerometry measurements to estimate the energy 399 

expenditure of flapping flight. Bishop et al. 2015 showed that in Bar-headed Geese migrating through 400 

the Himalayas, variations in heart rate and accelerometry closely track each other (their Figure 1); given 401 

that heart rate correlates with rate of oxygen consumption in this species (Groscolas et al. 2000), we 402 

can reasonably conclude that accelerometry can predict the power costs of flapping flight, at least in 403 

geese. Heart rate also correlates with accelerometry metrics in airborne Griffon Vultures Gyps fulvus 404 

(Duriez et al. 2014), while Hicks et al. (2017) demonstrated that accelerometry relates to power output 405 

in European Shags Phalacrocorax aristotelis. The current study supports these conclusions, this time 406 

providing direct evidence of a relationship between DBA and mechanical power, the latter derived from 407 

first principle calculations.  Further work is required to produce calibrations for application in the field. 408 

In situations where birds undertake extended periods of ascending flapping flight e.g. (Clarke et al. 409 

2007, Bishop et al. 2015), which may have an important effect on their energy stores or fatigue, the 410 

approach presented in the current study can be particularly valuable. 411 
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Figure Legends 439 

Figure 1 Schematic diagram of the experimental setup. (H1 = 0 m height gain; H6 = 4.5 m height gain; 440 

see main text for further details).  For each height condition the bird flew from falconer 1 to falconer 2.  441 

Figure 2 Attachment (left) and location (right) of the accelerometer, placed on the back of the Harris's 442 

Hawk using surgical tape. The accelerometer was protected from rain and dust by a thin plastic film. 443 

Figure 3. Regressions of mean dynamic body acceleration (DBA) against mean climb power during 444 

short flights by Harris’s Hawks (N = 5). The plotted data represent single values (n = 88), colour- and 445 

shape-coded to identify each bird. Colour- and style-coded lines of best fit are shown; NB that one best 446 

fit line (green, long dash) substantially obscures another (olive, short dash). Bird 1, red full and circle 447 

symbols, R2 = 0.80, Bird 2, olive short dash and triangle symbols, R2 = 0.58, Bird 3, green long dash 448 

and squared symbols, R2 = 0.64, Bird 4, blue wide dash and plus symbols, R2 = 0.70, Bird 5, mauve 449 

stippled and cross squared symbols, R2 = 0.66.    450 

Figure 4. Relationships between flight kinematics, dynamic body acceleration (DBA) and estimates of 451 

climb power during short flights by five Harris's Hawks (n = 88). In each panel, the black line represents 452 

the line of best fit returned from a linear mixed model that included bird identity as a random factor. 453 

The grey dashed lines indicate the 95% confidence interval around the line of best fit derived from 454 

standard calculations, while the grey stippled lines indicate the 95% confidence intervals derived from 455 

a bootstrap procedure based on 200 iterations. 456 

Figure 5. The average dynamic body acceleration (DBA) per unit time only depends on the amplitude 457 

of the accelerometer signal and not on its frequency. (a) Idealised flapping profile recorded by the 458 

accelerometer. The average DBA of a flapping cycle corresponds to the area of the shaded region, 459 

divided by the length of the flapping cycle (in this example 0.2 s). (b) Accelerometer profile identical 460 

to the one in (a), but with double the frequency. The shaded area in each cycle is now only half the area 461 

in (a), but there are now twice as many cycles per unit time, so that the average DBA is unchanged. 462 

Figure 6. Modelled relationships between body movement, acceleration amplitude and wing beat 463 

frequency. (a) Two hypothetical flapping profiles, here exemplified by sinusoidal curves, having 464 

exactly the same amplitude (in cm of body oscillations) but different frequencies (black curve: 5.5 Hz; 465 

red dashed curve: 4.125 Hz). The body movements exemplified in (a) produce acceleration profiles (in 466 

units of g) with identical frequencies (b), but the amplitude has changed - faster body movements 467 

produce higher acceleration amplitudes for the same body movement amplitudes. 468 
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