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Abstract
We consider in this paper overlapping generations
economies with pollution resulting from both consump-
tion and production. The competitive equilibrium steady
state is compared to the optimal steady state from the
social planner’s viewpoint. We show that the dynamical
inefficiency of a competitive equilibrium steady state with
capital–labor ratio exceeding the golden rule ratio still
holds. Moreover, the range of dynamically efficient steady
state capital ratios increases with the effectiveness of the
environment maintenance technology, and decreases for
more polluting production technologies. We character-
ize some tax and transfer policies that decentralize as a
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competitive equilibrium outcome the transition to the so-
cial planner’s steady state.

1. Introduction

Environmental externalities have been studied in economies with overlap-
ping generations for decades. In particular, the effects of environmental
externalities on dynamic inefficiency, productivity, health, and longevity of
agents have been addressed, as well as policy interventions that may be
needed. While in most papers pollution is assumed to come from produc-
tion, and the environment is supposed to improve or degrade by itself at
a constant rate (Marini and Scaramozzino 1995; Jouvet, Michel, and Vidal
2000; Gutiérrez 2008; Pautrel 2009; Jouvet, Pestieau, and Ponthiere 2010),
other papers assume that pollution comes from consumption (John and
Pecchenino 1994; John et al. 1995; Ono 1996). As a consequence of the
differing assumptions, accounts of the effect of environmental externalities
on capital accumulation vary widely across papers. Specifically, John et al.
(1995) showed that when only consumption pollutes, the economy accumu-
lates less capital than what would be optimal. Conversely, Gutiérrez (2008)
showed that when only production pollutes, the economy accumulates in-
stead more capital than at the optimal level. This is so because in John et al.
(1995) agents pay taxes to maintain environment when young, so that an
increased pollution reduces their savings; however, in Gutiérrez (2008) pol-
lution increases health costs in old age, leading agents to save more to pay
for them. The difference seems therefore to come from when the taxes are
paid (when young or old) rather than from whether pollution comes from
production or consumption. Another main difference between John et al.
(1995) and Gutiérrez (2008) is their different assumptions about the ability
of environment to recover from pollution. John et al. (1995) assumes that
environment naturally degrades over time, while Gutiérrez (2008) assumes
that environment recovers naturally.

This paper aims at identifying the net impact of both production and
consumption on environment by allowing for the two types of pollution si-
multaneously. Moreover, as in John and Pecchenino (1994) and John et al.
(1995), we assume that the environment degrades naturally over time at a
constant rate and that young agents devote part of their income to main-
tain it.1 In this setup, we characterize the range of dynamically inefficient
capital–labor ratios. Next, we introduce taxes and transfer policies that de-
centralize the first-best steady state, and the transition to it, as a competitive
equilibrium steady state.

1 In John and Pecchenino (1994) and John et al. (1995), only the consumption of old
agents pollutes; young agents do not consume. In Ono (1996), it is assumed that con-
sumption of both young and old agents degrade the environment but with a period lag.
Here, we assume also that consumptions of both old and young agents and production
pollute without decay.
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The rest of the paper is organized as follows: Section 2 introduces the
model. Section 3 characterizes its competitive equilibria. Section 4 presents
the problem of the social planner, defines the efficient allocation with and
without discounting, and characterizes the range of dynamically inefficient
capital ratios (Proposition 1). The competitive equilibrium steady state and
the planner’s steady state are compared in Section 5 where we introduce
some tax and transfer schemes that decentralize the planner’s steady state
and the transition to it as market outcome (from Proposition 2 to Proposi-
tion 5). Section 6 discusses these policies and show conditions under which
a policy is both preferred by agents (Proposition 6), as well as more easily
implementable. Section 7 concludes the paper.

2. The Model

We consider the overlapping generations economy in Diamond (1965) with
a constant population of identical agents. At each period t output can be
produced out of capital and labor according to a constant returns to scale
neoclassical production function F (Kt , Lt ). This production is assumed to
satisfy the condition FK (k, 1) + FKK (k, 1)k > 0 for all k > 0 where k = K/L,
which guarantees the existence of competitive equilibrium dynamics (see
Appendix A.3). Note that this property holds for all constant elasticity of sub-
stitution production functions F (Kt , Lt ) = [θK ρ

t + (1 − θ)Lρ
t ]1/ρ , θ ∈ (0, 1),

ρ ∈ (−∞, 1]. Capital fully depreciates in each period. The representative
firm maximizes profits solving under perfect competition.

max
Kt ,Lt ≥0

F (Kt , Lt ) − rt Kt − wt Lt,

so that the rental rate of capital and wage rate are, in each period t , the
marginal productivity of capital and labor, respectively, i.e.,

rt = FK (Kt , Lt ), (1)

wt = FL(Kt , Lt ). (2)

The size of each generation is normalized to one. Each agent lives
two periods, say young and old. When young, an agent is endowed with
one unit of labor that he supplies inelastically, so that Lt = 1 for all t ,
since population is constant. Agents born in period t divide their wage
wt between consumption when young c t

0, investment in maintaining the
environment mt , and savings kt lent to firms for a return rate rt+1 to
be used in t + 1 as capital, so that Kt+1 = kt since population is normal-
ized to 1. The return to savings rt+1kt is used up as old-age consumption.
Agents born at date t have preferences over their consumptions when young
and old (c t

0, c t
1) ∈ R

2
+ and the environmental quality when old, Et+1 ∈ R,
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represented by u(c t
0) + v(c t

1) + φ(Et+1) with u′, v′, φ′ > 0, u′′, v′′, φ′′ < 0,
and u′(0) = v′(0) = +∞, u′(+∞) = v′(+∞) = 0, φ′(+∞) = 0, φ′(−∞) =
+∞.2

Environmental quality evolves according to

Et+1 = (1 − b)Et − αF (Kt+1, Lt+1) − β(c t+1
0 + c t

1) + γ mt (3)

for some α, β, γ > 0, and b ∈ (0, 1]. That is to say, environmental quality
converges autonomously to a natural level normalized to zero at a rate b that
measures the speed of reversion to this level. Nonetheless, production and
consumption degrade environmental quality by an amount αF (Kt+1, 1) and
β(c t+1

0 + c t
1), respectively, while young agents can improve the environmen-

tal quality they will enjoy when old by an amount γ mt if they devote a portion
mt of their labor income to that end.

The lifetime utility maximization problem of the representative agent is

max
c t

0,c
t
1,k

t ,mt ≥0Et , E e
t+1

u(c t
0) + v(c t

1) + φ(E e
t+1) (4)

subject to

c t
0 + kt + mt = wt , (5)

c t
1 = rt+1kt , (6)

Et = (1 − b)Et−1 − αF (kt−1, 1) − β(c t
0 + c t−1

1 ) + γ mt−1, (7)

E e
t+1 = (1 − b)Et − αF (Kt+1, 1) − β(c t+1,e

0 + c t
1) + γ mt , (8)

where E e
t+1 is, at t , the expected state of environment at t + 1, given the

expected consumption of the next generation young agent c t+1,e
0 and Et−1,

c t−1
1 , kt−1, mt−1, wt , rt+1. Since the representative agent is assumed to be

negligible within his own generation, he thinks the impact of his savings

2 Green preferences are necessary to capture the externality, and this can be achieved in
several ways. Many papers in the literature introduce the stock of pollution as a public
bad entering the utility function instead of environmental quality. Alternatively, pollution
makes agents pay a health cost that reduces utility because of consuming less. In our paper,
following John and Pecchenino (1994) John et al. (1995), we introduce the environmental
quality as a public good entering the utility function of agents. This approach to the impact
of environment on choices of agents seems more adequate for several reasons. First, the
health and utility of agents in fact depend on the quality of environment around rather
than on the quantity of pollution. Second, from the dynamics of environmental quality in
(3), environmental quality captures anyway the effect of pollution, and moreover not only
the impact of current pollution and abatement activities but those in the past also. Third,
without any activity the environmental quality converges (upgrades or depreciates itself) to
a level normalized to zero; while for the alternative approach, environment just upgrades
itself via a rate of decay of the stock of pollution, so that environment never degrades itself,
which prevents capturing the reversion to wilderness that may render environment unfit
for human activity.
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kt on aggregate capital Kt+1 to be negligible as well, ignoring that actually
Kt+1 = kt at equilibrium. This assumption implies that he does not inter-
nalize the impact of the savings decision on environment via production.
Notwithstanding, the agent considers the impact of his consumption and
maintenance choices not to be negligible. This is meant to capture the idea
that agents care actually, not for the global environment, but for the nearby
environment on which their consumption and maintenance choices have a
direct impact. In any event, given that there is a single representative agent,
at equilibrium local and global environment coincide. Since production is
not in the hands of the agent (although he supplies the necessary capital
through his savings), that he disregards his impact on environment through
production is the natural assumption to make.

An interior optimal choice (c t
0, c t

1, kt , mt , Et , E e
t+1) for agent t is there-

fore characterized by the first-order conditions (FOCs)

u′(c t
0) − [β(1 − b) + γ ] φ′(E e

t+1) = 0, (9)

v′(c t
1) −

[
β + γ

rt+1

]
φ′(E e

t+1) = 0, (10)

c t
0 + kt + mt − wt = 0, (11)

c t
1 − rt+1kt = 0, (12)

Et − (1 − b)Et−1 + αF (kt−1, 1) + β(c t
0 + c t−1

1 ) − γ mt−1 = 0, (13)

E e
t+1 − (1 − b)Et + αF (Kt+1, 1) + β(c t+1,e

0 + c t
1) − γ mt = 0, (14)

to be an implicit function of Et−1, c t−1
1 , kt−1, mt−1, wt , rt+1, and c t+1,e

0 as
long as the Jacobian matrix of the left-hand side of the system above with
respect to c t

0, c t
1, kt , mt , Et , E e

t+1 is regular at the solution. The existence
and regularity of the optimal solution is established in Appendix A.1. For
these FOCs to be not only necessary but also sufficient for the solution to
be a maximum, the second-order conditions (SOCs) are shown to hold at
equilibrium in Appendix A.2.

3. Competitive Equilibria

The perfect foresight competitive equilibria are characterized by (i) the
agent’s utility maximization under the budget constraints, with correct ex-
pectations, (ii) the firms’ profit maximization determining factors’ prices,
and (iii) the dynamics of environment. Therefore, a competitive equilibrium
allocation {c t

0, c t
1, kt , mt , Et+1}t is a solution to the system of equations

u′(c t
0) − [β(1 − b) + γ ] φ′(Et+1) = 0, (15)
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v′(c t
1) −

[
β + γ

FK (kt , 1)

]
φ′(Et+1) = 0, (16)

c t
0 + kt + mt − FL(kt−1, 1) = 0, (17)

c t
1 − FK (kt , 1)kt = 0, (18)

Et+1 − (1 − b)Et + αF (kt , 1) + β(c t+1
0 + c t

1) − γ mt = 0. (19)

Note that the feasibility of the allocation of resources is guaranteed by the
agent’s budget constraints (17) and (18), since at t

c t
0 + c t−1

1 + kt + mt = FK (kt−1, 1)kt−1 + FL(kt−1, 1) = F (kt−1, 1).

The perfect foresight competitive equilibria of this economy follow a dynam-
ics represented by a first-order difference equation, because of the regularity
of the associated Jacobian matrix of the left-hand side of the system of equa-
tions above with respect to c t+1

0 , c t
1, kt , mt , Et+1 (see Appendix A.3).

A perfect foresight competitive equilibrium steady state, in particular, is
a (c0, c1, k, m, E ) solution to the system of equations

u′(c0) − [β(1 − b) + γ ] φ′(E ) = 0,

v′(c1) −
[
β + γ

FK (k, 1)

]
φ′(E ) = 0,

c0 + k + m − FL(k, 1) = 0,

c1 − FK (k, 1)k = 0,

b E + αF (k, 1) + β(c0 + c1) − γ m = 0.

4. The Social Planner’s Choice with and without Discounting

In this section, we consider the optimal allocation from the viewpoint of a
social planner that allocates resources in order to maximize a weighted sum
of the welfare of all current and future generations. The allocation selected
by the social planner, which is optimal in the Pareto sense, is a solution to
the problem

max
{c t

0,c
t
1,k

t ,mt ,Et+1}∞
t=0

∞∑
t=0

1
(1 + R)t

[
u(c t

0) + v(c t
1) + φ(Et+1)

]
(20)

subject to, ∀t = 0, 1, 2, ...,

c t
0 + c t−1

1 + kt + mt = F (kt−1, 1) (21)

Et+1 = (1 − b)Et − αF (kt , 1) − β(c t+1
0 + c t

1) + γ mt , (22)
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given some initial conditions c−1
1 , k−1, E0, where 0 ≤ R is the social planner’s

subjective discount rate.3 The first constraint (21) of the problem is the re-
source constraint of the economy in period t requiring that the total output
in that period is split into consumptions of the current young and old, sav-
ings for next period’s capital, and environmental maintenance. The second
constraint (22) is the dynamics of the environmental quality.

The social planner’s choice of a steady state is a (c̄0, c̄1, m̄, k̄, Ē ) satisfying
(see Appendix A.4)

u′(c̄0) = (1 + R)
γ + β(1 + R)

b + R
φ′(Ē ), (23)

v′(c̄1) = γ + β(1 + R)
b + R

φ′(Ē ), (24)

FK (k̄, 1) = γ (1 + R)
γ − (1 + R)α

, (25)

c̄0 + c̄1 + k̄ + m̄ = F (k̄, 1), (26)

b Ē + αF (k̄, 1) + β(c̄0 + c̄1) − γ m̄ = 0. (27)

(the planner’s discount rate R cannot be arbitrarily high for the optimal
steady state to be characterized as above, specifically γ > (1 + R)α needs
to hold, which requires γ > α , so that FK (k̄, 1) > 0). More specifically, in
the case of the social planner caring about all generations equally, i.e.,
R = 0, the planer’s steady state is the so-called golden rule steady state
{c∗

0, c∗
1, k∗, m∗, E ∗} that maximizes the utility of the representative agent and

is characterized by being a solution to the system

u′(c∗
0) = γ + β

b
φ′(E ∗), (28)

v′(c∗
1) = γ + β

b
φ′(E ∗), (29)

FK (k∗, 1) = γ

γ − α
, (30)

c∗
0 + c∗

1 + k∗ + m∗ = F (k∗, 1), (31)

b E ∗ + αF (k∗, 1) + β(c∗
0 + c∗

1) − γ m∗ = 0. (32)

3 The discount rate R is strictly positive when the social planner cares less about a gen-
eration’s welfare the further away in the future that generation is, while R equals to zero
when she cares about all generations equally, no matter how far in the future they may be.
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Note that, from (28) and (29), the marginal utility of consumption of the
young agent must equal that of the consumption of the old agent.

Diamond (1965) shows that, in the standard OLG model without pol-
lution externalities, a competitive equilibrium steady state whose capital per
worker exceeds the golden rule level is dynamically inefficient. In this paper,
we consider instead an economy with pollution externalities coming from
both production and consumption, in which the environment degrade it-
self over time, and where the quality of the environment can be improved
through maintenance. It turns out that, as in Diamond (1965), the golden
rule capital ratio of this economy with pollution externalities is still the high-
est level of capital ratio that is dynamically efficient.4

PROPOSITION 1: In a Diamond (1965) overlapping generations economy with
consumption and production pollution, for an efficient enough cleaning technology,
compared to the marginal polluting impact of production (specifically, for γ > α in
the model), the golden rule capital ratio (i.e., the planner’s steady state choice without
discounting) is the highest dynamically efficient capital ratio.

Proof: Since FKK (k, 1) < 0 for all k, the planner’s optimal capital ratio k̄ is
implicitly defined to be a differentiable function k̄(R) of R by the condition

FK (k̄, 1) = γ (1 + R)
γ − (1 + R)α

whose derivative, by the implicit function theorem, is

k̄ ′(R) = 1
FKK (k̄(R), 1)

(
γ

γ − (1 + R)α

)2

< 0. (33)

So, k̄ is decreasing in R . Hence, k̄(R) is maximal when R = 0, which is corre-
sponds to the golden rule level of capital k∗. �

Proposition 1 shows that any steady state capital ratio exceeding k∗ is
dynamically inefficient. From (30) the golden rule capital ratio k∗ is decreas-
ing in the production pollution parameter α. It is, however, increasing in
the environment-maintaining technology γ . Hence, the more polluting is
production, the smaller the range of steady state allocations that are dynam-
ically efficient for some discount factor R . Similarly, the more effective is the

4 In a different framework and when pollution externalities are large enough, Gutiérrez
(2008) has shown the existence of dynamically efficient competitive equilibrium steady
state capital ratios that exceed the golden rule capital ratio. Specifically, when (i) pollution
externalities come only from production, (ii) environment recovers itself at a constant
rate, (iii) no resource is devoted to maintaining the environment, and (iv) the pollution
externality decreases the utility of the agents only indirectly by requiring each agent to pay
for extra health costs in old age, Gutiérrez (2008) shows the existence of a “super golden
rule” level of capital ratio (beyond the golden rule level) such that any stationary capital
ratio exceeding this level is necessarily dynamically inefficient.
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environment maintenance technology, the bigger the range of steady state
allocations that are dynamically efficient for some discount factor R .

5. Policy Implementation of the Planner’s Optimal Steady
State

In this section, we provide tax and transfer policies allowing to implement
the planner’s optimal steady state. Ono (1996) and Gutiérrez (2008) also
introduced tax and transfer schemes to decentralize the golden rule steady
state in the context of the pollution externalities they consider (from con-
sumption and production only, respectively). However, their schemes up-
hold the golden rule once the economy is already at that steady state. In
this section, we provide instead policies that lead the economy toward the
social planer’s first-best steady state and will keep it there once reached.
The policies fulfill this in two stages. In the first stage (in the period t − 1),
taxes and transfers are set in order to make the agent born in period t − 1
choose c t−1

0 = c∗
0, c t−1

1 = c∗
1, kt−1 = k∗ and E e

t = E ∗ (but not mt−1 = m∗ or
Et−1 = E ∗). For the sake of avoiding unnecessarily cumbersome notation,
the argument is presented for the case R = 0, although it can be rewritten
for any R ≥ 0). Then, in the second stage, taxes and transfers are reset to up-
hold the planner’s steady state from period t onward. The first scheme based
on the taxation of consumption is presented next in detail. The subsequent
schemes work analogously.

5.1. Taxes on Consumptions

As in Ono (1996), we consider first taxes on consumption along with lump-
sum taxes and transfers. Letting τ t

0 and τ t
1 be the tax rate on agent t’s con-

sumption when young and old, respectively, T t
0 a lump-sum tax (if positive)

levied on agent t’s income when young, and T t
1 a lump-sum transfer (if posi-

tive) to the same agent when old at date t + 1, the problem of agent t is then

max
c t

0,c
t
1,k

t ,mt ≥0Et ,E e
t+1

u(c t
0) + v(c t

1) + φ(E e
t+1) (34)

subject to

(1 + τ t
0)c t

0 + kt + mt = wt − T t
0, (35)

(1 + τ t
1)c t

1 = rt+1kt + T t
1, (36)

Et = (1 − b)Et−1 − αF (kt−1, 1) − β(c t
0 + c t−1

1 ) + γ mt−1, (37)

E e
t+1 = (1 − b)Et − αF (Kt+1, 1) − β(c t+1,e

0 + c t
1) + γ mt , (38)



Steady State Efficiency in OGE with Environmental Externalities 629

given Et−1, c t−1
1 , kt−1, mt−1, wt−1, c t+1,e

0 , and rt+1. Note again that in Equa-
tion (38), the agent, being negligible within his generation, ignores the fact
that Kt+1 = kt and hence is unable to internalize the effect of the savings
decisions on environment through the aggregate output.

PROPOSITION 2: In a Diamond (1965) overlapping generations economy with
pollution from both consumption and production, the planner’s steady state can be
implemented at any given period t by the following period-by-period balanced-budget
policy: Announce at t − 1 that the following consumption tax rates and lump-sum
transfers will apply,

(1) to generation born at t − 1

τ t−1
0 = γ + β − [γ + β(1 − b)] b

γ b
,

τ t−1
1 = γ + β(1 − b)

(γ − α)b
− 1,

T t−1
0 = 1

A

⎛
⎝ γ

1 − b
−1

⎞
⎠

′

⎛
⎝ FL(kt−2, 1) − (1 + τ0)c∗

0 − k∗

(1 − b)Et−2 − αF (kt−2, 1) − β((1 + τ0)c∗
0 + c t−2

1 ) + γ mt−2

E ∗ + αF (k∗, 1) + β(c∗
0 + c∗

1)

⎞
⎠ ,

T t−1
1 = (1 + τ1)c∗

1 − FK (k∗, 1)k∗,

where A = γ + β(1 − b)
(2) to generation born from t onwards

τ0 = γ + β − [γ + β(1 − b)] b
γ b

,

τ1 = γ + β(1 − b)
(γ − α)b

− 1,

T0 = FL(k∗, 1) − (1 + τ0)c∗
0 − k∗ − m∗,

T1 = (1 + τ1)c∗
1 − FK (k∗, 1)k∗.

Proof: See Appendix A.5.

5.2. Taxes on Consumptions and Capital Income

In Section 5.1, we introduced taxes on consumptions in which the tax rates
differ between consumptions of the old and the young. In reality, however,
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this tax scheme seems to be difficult to apply because it discriminates be-
tween young and old agents. In order to avoid the discrimination, a unique
rate of consumption tax τ t should be applied. Beside that, a capital income
tax τ t

k and a system of lump-sum tax T t
0 (if positive) and lump-sum transfer

T t
1 (if positive), levied on agent t’s incomes, are introduced to show that the

best steady state allocation can be achieved. The problem of agent t under
the tax policy is then

max
c t

0,c
t
1,k

t ,mt ≥0Et ,E e
t+1

u(c t
0) + v(c t

1) + φ(E e
t+1) (39)

subject to

(1 + τ t )c t
0 + kt + mt = wt − T t

0, (40)

(1 + τ t )c t
1 = (1 − τ t

k )rt+1kt + T t
1, (41)

Et = (1 − b)Et−1 − αF (kt−1, 1) − β(c t
0 + c t−1

1 ) + γ mt−1, (42)

E e
t+1 = (1 − b)Et − αF (Kt+1, 1) − β(c t+1,e

0 + c t
1) + γ mt , (43)

given Et−1, c t−1
1 , kt−1, mt−1, wt , c t+1,e

0 , and rt+1. Note again that in (43), the
agent, being negligible within his generation, ignores the fact that Kt+1 =
kt and hence is unable to internalize the effect of the savings decisions on
environment through the aggregate output.

PROPOSITION 3: In a Diamond (1965) overlapping generations economy with
pollution from both consumption and production, the planner’s steady state can be
implemented at any given period t by the following period-by-period balanced-budget
policy: Announce at t − 1 that the following consumption tax rate, capital income tax
rate and lump-sum transfers will apply,

(1) to generation born at t − 1

τ t−1 = γ + β − [γ + β(1 − b)] b
γ b

,

τ t−1
k = α(γ + β) − βb2(γ − α) − αβb

γ [γ + β(1 − b)]
,

T t−1
0 = 1

A

⎛
⎝ γ

1 − b
−1

⎞
⎠

′

⎛
⎝ FL(kt−2, 1) − (1 + τ)c∗

0 − k∗

(1 − b)Et−2 − αF (kt−2, 1) − β((1 + τ)c∗
0 + c t−2

1 ) + γ mt−2

E ∗ + αF (k∗, 1) + β(c∗
0 + c∗

1)

⎞
⎠ ,

T t−1
1 = (1 + τ)c∗

1 − (1 − τk)FK (k∗, 1)k∗,
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where A = γ + β(1 − b),
(2) to all generations born from period t onwards

τ = γ + β − [γ + β(1 − b)] b
γ b

,

τk = α(γ + β) − βb2(γ − α) − αβb
γ [γ + β(1 − b)]

,

T0 = FL(k∗, 1) − (1 + τ)c∗
0 − k∗ − m∗,

T1 = (1 + τ)c∗
1 − (1 − τk)FK (k∗, 1)k∗.

Proof: The proof for this proposition is similar to the proof for Proposition
2. �

5.3. Taxes on Consumptions and Production

We still keep the nondiscriminatory tax rate τ t on consumptions and the sys-
tem of lump-sum tax T t

0 (if positive) and lump-sum transfer T t
1 (if positive).

However, we now introduce a Pigouvian tax on production instead of tax on
capital income. In any period t , let τ t

p be the tax paid by firms per one unit
of output produced in period t . We will design taxes and transfers policy en-
suring the government’s budget to be balanced and achieving the planner’s
steady state through competitive markets.

Under the production tax, the problem that the firm must solve in pe-
riod t is

max
Kt

(1 − τ t
p )F (Kt , 1) − rt Kt − wt . (44)

The returns to capital and labor are at equilibrium, respectively,

rt = (1 − τ t
p )FK (kt−1, 1), (45)

wt = (1 − τ t
p )FL(kt−1, 1). (46)

Under the taxes and transfers policy, the agent t’s problem is

max
c t

0,c
t
1,k

t ,mt ≥0Et , E e
t+1

u(c t
0) + v(c t

1) + φ(E e
t+1) (47)

subject to

(1 + τ t )c t
0 + kt + mt = wt − T t

0, (48)

(1 + τ t )c t
1 = rt+1kt + T t

1, (49)

Et = (1 − b)Et−1 − αF (kt−1, 1) − β(c t
0 + c t−1

1 ) + γmt−1, (50)
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E e
t+1 = (1 − b)Et − αF (Kt+1, 1) − β(c t+1,e

0 + c t
1) + γmt−1, (51)

given Et−1, c t−1
1 , kt−1, mt−1, wt , c t+1,e

0 , and rt+1. Note again that in (51), the
agent, being negligible within his generation, ignores the fact that Kt+1 =
kt and hence is unable to internalize the effect of the savings decisions on
environment through the aggregate output.

PROPOSITION 4: In a Diamond (1965) overlapping generations economy with
pollution from both consumption and production, the planner’s steady state can be
implemented at any given period t by the following period-by-period balanced-budget
policy: Announce at t − 1 that the following consumption tax rate, production tax
rates and lump-sum transfers will apply,

(1) to generation born at t − 1

τ t−1 = γ + β − [γ + β(1 − b)] b
γ b

,

τ t
p = α(γ + β) − βb2(γ − α) − αβb

γ [γ + β(1 − b)]
,

T t−1
0 = 1

A

⎛
⎝ γ

1 − b
−1

⎞
⎠

′

⎛
⎝ FL(kt−2, 1) − (1 + τ)c∗

0 − k∗

(1 − b)Et−2 − αF (kt−2, 1) − β((1 + τ)c∗
0 + c t−2

1 ) + γ mt−2

E ∗ + αF (k∗, 1) + β(c∗
0 + c∗

1)

⎞
⎠ ,

T t−1
1 = (1 + τ)c∗

1 − (1 − τp )FK (k∗, 1)k∗,

where A = γ + β(1 − b),
(2) to all generations born from period t onwards

τ = γ + β − [γ + β(1 − b)] b
γ b

,

τp = α(γ + β) − βb2(γ − α) − αβb
γ [γ + β(1 − b)]

,

T0 = (1 − τp )FL(k∗, 1) − (1 + τ)c∗
0 − k∗ − m∗,

T1 = (1 + τ)c∗
1 − (1 − τp )FK (k∗, 1)k∗.

Proof: The proof for this proposition is similar to the proof for Proposition
2. �



Steady State Efficiency in OGE with Environmental Externalities 633

5.4. Taxes on Consumption, Production, and Labor Income

We now modify the tax and transfer policy introduced in Section 5.3 by us-
ing the labor income tax rate τ t

w to replace the lump-sum tax T t
0. All other

things are kept the same as in the Section 5.3 Under this policy, the agent t’s
problem is

max
c t

0,c
t
1,k

t ,mt ≥0Et ,E e
t+1

u(c t
0) + v(c t

1) + φ(E e
t+1) (52)

subject to

(1 + τ t )c t
0 + kt + mt = (1 − τ t

w )wt , (53)

(1 + τ t )c t
1 = rt+1kt + T t

1, (54)

Et = (1 − b)Et − αF (kt−1, 1) − β(c t
0 + c t−1

1 ) + γ mt−1, (55)

E e
t+1 = (1 − b)Et − αF (Kt+1, 1) − β(c t+1,e

0 + c t
1) + γ mt , (56)

given Et−1, c t−1
1 , kt−1, mt−1, wt , c t+1,e

0 , and rt+1. Note again that in (56), the
agent, being negligible within his generation, ignores the fact that Kt+1 =
kt and hence is unable to internalize the effect of the savings decisions on
environment through the aggregate output.

PROPOSITION 5: In a Diamond (1965) overlapping generations economy with
pollution from both consumption and production, the planner’s steady state can be
implemented at any given period t by the following period-by-period balanced-budget
policy: Announce at t − 1 that the following consumption tax rate, production tax
rate, labor tax rate and lump-sum transfer will apply,

(1) to generation born at t − 1

τ t−1 = γ + β − [γ + β(1 − b)] b
γ b

,

τ t
p = α(γ + β) − βb2(γ − α) − αβb

γ [γ + β(1 − b)]
,

τ t−1
w = 1

B

⎛
⎝ γ

1 − b
−1

⎞
⎠

′

⎛
⎝ FL(kt−2, 1) − (1 + τ)c∗

0 − k∗

(1 − b)Et−2 − αF (kt−2, 1) − β((1 + τ)c∗
0+c t−2

1 )+γ mt−2

E ∗ + αF (k∗, 1) + β(c∗
0 + c∗

1)

⎞
⎠ ,

T t−1
1 = (1 + τ)c∗

1 − (1 − τp )FK (k∗, 1)k∗,
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where B = [γ + β(1 − b)] FL(kt−2, 1),5

(2) to all generations born from period t onwards

τ = γ + β − [γ + β(1 − b)] b
γ b

,

τp = α(γ + β) − βb2(γ − α) − αβb
γ [γ + β(1 − b)]

,

τw = 1 − (1 + τ)c∗
0 + k∗ + m∗

(1 − τp )FL(k∗, 1)
,

T1 = (1 + τ)c∗
1 − (1 − τp )FK (k∗, 1)k∗.

Proof: The proof for this proposition is similar to the proof for Proposition
2. �

6. Discussion of Policies

The four alternative tax and transfer policies analyzed above conduct the
economy to the same outcome, the social optimum, through the same
Pareto-improving path. So from a welfare point of view, the agents are in-
different between the four policies. However, the agents pay lower taxes
and/or receive higher transfers under some of the policies compared to
others, which may make the former policies likelier to be voted for and im-
plemented. In our setting, the tax and transfer policy is announced at the
beginning of period t − 1. Therefore, we will analyze the taxes and transfers
that agents born in period t − 1 pay and receive, respectively, as well as those
for agents born from period t onwards.

For convenience of notation, we shall denote by subscripts 1, 2, 3, and 4,

respectively, the policies “taxes on consumptions,” “taxes on consumptions
and capital income,” “taxes on consumptions and production,” and “taxes
on consumptions, production, and labor income.”

The following proposition summarizes how the policies compare in
terms of the net taxes and transfer they generate from period t − 1 onwards:

PROPOSITION 6: In a Diamond (1965) overlapping generations economy with
pollution from both consumption and production, if at period t − 1 one of the tax and
transfer policies is announced, then

(1) in period t − 1, young agents pay the same amount of taxes under the four
policies above. Hence, old agents in period t − 1 receive the same amount of
transfers under these policies.

5 Note that this denominator differs from the corresponding denominator in Proposition
4 by a factor FL(kt−2, 1). This is obvious since τ t−1

w is the tax rate on labor income while T t−1
0

is a lump-sum tax on income.
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(2) from period t onwards, all agents are equally treated under the policies 1 and
2; and they are also equally treated under the policies 3 and 4, specifically

(2a) If α(γ + β) − βb2(γ − α) − αβb > (<)0, so that τp > (<)0,
then they pay less (more) taxes when young and receive more (less)
net transfers when old with policies 3 and 4 than with the two other.

(2b) If α(γ + β) − βb2(γ − α) − αβb = 0, so that τp = 0 and τk =
0, then policies 1, 2, and 3 coincide, and agents are equally treated
by all four policies.

Proof: See Appendix A.6 �

According to Proposition 6, which policy would be voted for by the
agents depends on the condition guaranteeing the production tax rate τp

to be positive, or negative, or zero. When α(γ + β) − βb2(γ − α) − αβb > 0,
Proposition 6 shows that policies 3 and 4 will likely be preferred by the agents
since they pay directly less taxes when young and receive more net transfer
when old with these policies than with the others. That is because under poli-
cies 3 and 4, firms pay part of the taxes while under the others they do not,
and agents may not perceive taxes paid by the firm as undistributed income.
In fact, when firms pay taxes, wages decrease. Actually, each agent being neg-
ligible takes into account only how taxes paid directly affect his/her budget
constraints, disregarding how taxes paid by firms affect his/her budget con-
straints. Therefore, they will likely vote for policies 3 and 4. Now, from the
policy maker’s point of view, the only difference between policies 3 and 4 is
the labor income tax versus the lump-sum tax raised on the income of the
young agents. For the same amount of tax, the labor income tax seems more
easily implementable because of being proportional on the agents’ wages
while the policy maker may have to set a heterogeneous lump-sum tax apply-
ing to heterogeneous agents in reality.

In the case α(γ + β) − βb2(γ − α) − αβb < 0, agents may prefer poli-
cies 1 and 2, because under policies 3 and 4 agents pay a higher tax when
young and receive a lower transfer when old to subsidize production. Indeed,
being negligible, agents cannot internalize that their paid tax subsidize pro-
duction that will increase wages making the policies equivalent. From the
policy maker’s point of view, policy 2 may be more easily implementable than
policy 1, since policy 1 requires discriminating between young and old con-
sumers about tax rates on consumption, the implementation of which may
be costly. For policy 2, however, the policy maker applies a single consump-
tion tax rate to both young and old, along with a capital income tax on the
returns to savings lent to firms via the banking system, and hence easy to
collect at a low cost.

For the case α(γ + β) − βb2(γ − α) − αβb = 0, agents are equally
treated by all four policies. Moreover, under this condition the policies 1,
2, and 3 exactly coincide. In this case, as discussed above, from the policy
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maker’s point of view policy 4 is likely to be more easily implementable than
the others.

7. Conclusion

We have presented a general equilibrium overlapping generations model
with environmental externalities from both production and consumption.
For such a model we proved that the competitive equilibrium steady state is
not the planner’s steady state, for any discount rate the social planner may
use. The pollution externality from consumption does not affect the range
of dynamically inefficient capital ratios, whereas the pollution externality
from production does. The higher the production pollution parameter α,
the larger the inefficient range. The environment-maintaining technology
γ also plays a role in determining the best steady state capital ratio k∗. The
cleaner the environment-maintaining technology, the smaller the range of
the dynamically inefficient allocations. By comparing the competitive steady
state and the best steady state, we designed balanced budget taxes and trans-
fer policies that decentralize the planner’s steady state. We also discussed the
desirability and implementability of each policy from the viewpoints of both
the agents and the policy maker.

This paper makes many simplifying assumptions, such as the technology
being exogenous, the population growth rate being zero, and there being
only one production sector. Further developments, including endogenous
technology and fertility, as well as the impact of human capital accumulation,
are left for future research.

Appendix

A.1. Existence of the Agent’s Optimal Solution

By substituting (11), (12), (13), and (14) into (9) and (10) the existence of
solution to the system of the first-order conditions (9)–(14) is equivalent to
the existence of solution to the system of two following equations:

u′(c t
0) − [β(1 − b) + γ ] φ′(E e

t+1) = 0, (A1)

v′(c t
1) −

β + γ

rt+1

β(1 − b) + γ
u′(c t

0) = 0, (A2)

where

E e
t+1 = (1 − b)

[
(1 − b)Et−1 − αF (kt−1, 1) − β(c t

0 + c t−1
1 ) + γ mt−1

]
−αF (Kt+1, 1) − β(c t+1,e

0 + c t
1) + γ (wt − c t

0 − c t
1

rt+1
).
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From (A2), by the implicit function theorem we can treat c t
1 as a function

of c t
0, c t

1 = ϕ(c t
0) where ϕ′(·) > 0, ϕ(0) = 0 and ϕ(+∞) = +∞. We rewrite

E e
t+1 = Q − [β(1 − b) + γ ] c t

0 −
(

β + γ

rt+1

)
ϕ(c t

0),

where Q = (1 − b)
[
(1 − b)Et−1 − αF (kt−1, 1) − βc t−1

1 + γ e t−1
] − αF

(Kt+1, 1) − βc t+1,e
0 + γ wt . Now the system of Equations (A1) and (A2) leads

to the following equation:

u′(c t
0) − [β(1 − b) + γ ] φ′ (Q − [β(1 − b) + γ ] c t

0

−
(

β + γ

rt+1

)
ϕ(c t

0)) = 0. (A3)

The existence of the agent’s optimal solution is equivalent to the exis-
tence of solution to Equation (A3). In effect, set


 = u′(c t
0) − [β(1 − b) + γ ] φ′

(
Q − [β(1 − b) + γ ] c t

0 −
(

β + γ

rt+1

)
ϕ(c t

0)
)

is a continuous function of c t
0. We have,

lim
c t

0→+∞

 = −∞ < 0

and

lim
c t

0→0+

 = +∞ > 0.

We also find that 
 is a monotone function of c t
0 since

∂

∂c t

0
= u′′(c t

0)

+ [β(1 − b) + γ ]
[
β(1 − b) + γ +

(
β + γ

rt+1

)
ϕ′(c t

0)
]

φ′′(E e
t+1) < 0.

So there exists a unique solution c t
0 > 0 to (A3), meaning that there

exists a unique optimal solution of the agent.

A.2. Checking the SOCs for the Maximization Problem of the Agent

For the FOCs to be sufficient conditions to characterize a (local) maximum
to the optimization problem, we have to check the sufficient SOCs. The La-
grangian of the maximization problem is

Zt = u(c t
0) + v(c t

1) + φ(E e
t+1) + λt

1(c t
0 + kt + mt − wt ) + λt

2(c t
1 − rt+1kt )

+λt
3

(
Et − (1 − b)Et−1 + αF (kt−1, 1) + β(c t

0 + c t−1
1 ) − γ mt−1)
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+λt
4

(
E e

t+1 − (1 − b)Et + αF (kt , 1) + β(c t+1,e
0 + c t

1) − γ mt
)

,

whose bordered Hessian will appear as

H̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 1 −rt+1 0 0 0
0 0 0 0 β 0 0 0 1 0
0 0 0 0 0 β 0 −γ b − 1 1
1 0 β 0 u′′(c t

0) 0 0 0 0 0
0 1 0 β 0 v′′(c t

1) 0 0 0 0
1 −rt+1 0 0 0 0 0 0 0 0
1 0 0 −γ 0 0 0 0 0 0
0 0 1 b − 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 φ′′(E e

t+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The sufficient SOCs for a maximum are

(−1)5
∣∣H̄5

∣∣ = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 −rt+1 0 0
0 0 0 0 β 0 0 0 1
0 0 0 0 0 β 0 −γ b − 1
1 0 β 0 u′′(c t

0) 0 0 0 0
0 1 0 β 0 v′′(c t

1) 0 0 0
1 −rt+1 0 0 0 0 0 0 0
1 0 0 −γ 0 0 0 0 0
0 0 1 b − 1 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= − (β(1 − b) + γ )2 r 2

t+1v′′(c t
1) − (βrt+1 + γ )2 u′′(c t

0) > 0,

(−1)6
∣∣H̄6

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 1 −rt+1 0 0 0
0 0 0 0 β 0 0 0 1 0
0 0 0 0 0 β 0 −γ b − 1 1
1 0 β 0 u′′(c t

0) 0 0 0 0 0
0 1 0 β 0 v′′(c t

1) 0 0 0 0
1 −rt+1 0 0 0 0 0 0 0 0
1 0 0 −γ 0 0 0 0 0 0
0 0 1 b − 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 φ′′(E e

t+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= r 2

t+1v′′(c t
1)u′′(c t

0) + φ′′(E e
t+1)

∣∣H̄5
∣∣ > 0,

which guarantees that the solution to the agent’s problem is a maximum
indeed.
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A.3. Competitive Equilibrium Dynamics

The competitive equilibrium conditions impose on (c t+1
0 , c t

1, kt , mt , Et+1) a
dynamics described by a first-order difference equation, because

u′(c t
0) − [β(1 − b) + γ ] φ′(Et+1) = 0,

v′(c t
1) −

[
β + γ

FK (kt , 1)

]
φ′(Et+1) = 0,

c t
0 + kt + mt − FL(kt−1, 1) = 0,

c t
1 − FK (kt , 1)kt = 0,

Et+1 − (1 − b)Et + αF (kt , 1) + β(c t+1
0 + c t

1) − γ mt = 0,

implicitly define it to be a function of its lagged value (c t
0,

c t−1
1 , kt−1, mt−1, Et ). In effect, the associated Jacobian matrix with respect to

(c t+1
0 , c t

1, kt , mt , Et+1)

J =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 G
0 v′′(c t

1) D 0 H
0 0 1 1 0
0 1 −C 0 0
β β αFK (kt , 1) −γ 1

⎞
⎟⎟⎟⎟⎠ ,

where

C = FK (kt , 1) + FKK (kt , 1)kt > 0,

D = γ FKK (kt , 1)
FK (kt , 1)2

φ′(Et+1) < 0,

G = − [β(1 − b) + γ ] φ′′(Et+1) > 0,

H = −
[
β + γ

FK (kt , 1)

]
φ′′(Et+1) > 0,

is regular, since

det(J ) = G

∣∣∣∣∣∣∣∣

0 v′′(c t
1) D 0

0 0 1 1
0 1 −C 0
β β αFK (kt , 1) −γ

∣∣∣∣∣∣∣∣

= −Gβ

∣∣∣∣∣∣
v′′(c t

1) D 0
0 1 1
1 −C 0

∣∣∣∣∣∣
= −Gβ

[
D + Cv′′(c t

1)
]

> 0.
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Because the Jacobian matrix is regular for all (c t+1
0 , c t

1, kt , mt , Et+1), it is ev-
idently regular at the solution. This implies that for all competitive equilib-
rium (c t+1

0 , c t
1, kt , mt , Et+1)t there exists, for all t , a function ψ : R

5 → R
5

such that ⎛
⎜⎜⎜⎜⎝

c t+1
0
c t

1
kt

mt

Et+1

⎞
⎟⎟⎟⎟⎠ = ψ

⎛
⎜⎜⎜⎜⎝

c t
0

c t−1
1

kt−1

mt−1

Et

⎞
⎟⎟⎟⎟⎠ .

A.4. Solving the Problem of the Social Planner

The Lagrange function for this problem is

L =
+∞∑
t=0

1
(1 + R)t

[
u(c t

0) + u(c t
1) + φ(Et+1)

]

+
+∞∑
t=0

μt

(1 + R)t

[
F (kt−1, 1) − c t

0 − c t−1
1 − kt − mt]

+
+∞∑
t=0

ηt

(1 + R)t

[
Et+1 − (1 − b)Et + αF (kt , 1) + β(c t+1

0 + c t
1) − γ mt] .

The FOCs of the maximization problem are

∂L
∂c t

0
= u′(c t

0)
(1 + R)t

− μt

(1 + R)t
+ βηt−1

(1 + R)t−1
= 0,

∂L
∂c t

1
= v′(c t

1)
(1 + R)t

− μt+1

(1 + R)t+1
+ βηt

(1 + R)t
= 0,

∂L
∂ Et+1

= φ′(Et+1)
(1 + R)t

+ ηt

(1 + R)t
− ηt+1(1 − b)

(1 + R)t+1
= 0,

∂L
∂kt

= − μt

(1 + R)t
+ μt+1FK (kt , 1)

(1 + R)t+1
+ ηtαFK (kt , 1)

(1 + R)t
= 0,

∂L
∂mt

= − μt

(1 + R)t
− ηtγ

(1 + R)t
= 0,

that is to say

u′(c t
0) − μt + βηt−1(1 + R) = 0,

v′(c t
1) − μt+1

1 + R
+ βηt = 0,

φ′(Et+1) + ηt − ηt+1(1 − b)
1 + R

= 0,
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−μt + μt+1FK (kt , 1)
1 + R

+ ηtαFK (kt , 1) = 0,

−μt − ηtγ = 0.

At the steady state,

u′(c̄0) = μ − βη(1 + R),

v′(c̄1) = μ

1 + R
− βη,

φ′(Ē ) = −η + (1 − b)η
1 + R

,

FK (k̄, 1) = μ(1 + R)
μ + αη(1 + R)

,

μ = −ηγ.

Therefore,

u′(c̄0) = (1 + R)
γ + β(1 + R)

b + R
φ′(Ē ),

v′(c̄1) = γ + β(1 + R)
b + R

φ′(Ē ),

FK (k̄, 1) = γ (1 + R)
γ − (1 + R)α

.

A.5. Proof of Proposition 2

Note first that, since a competitive equilibrium steady state under a period-
by-period balanced-budget stationary policy of consumption tax rates τ0, τ1,
and lump-sum transfers T0, T1 is characterized by

u′(c0) = [β(1 − b) + γ (1 + τ0)] φ′(E ),

u′(c0) =
[
β + γ

FK (k, 1)
(1 + τ1)

]
φ′(E ),

(1 + τ0)c0 + k + m = FL(k, 1) − T0,

(1 + τ1)c1 = FK (k, 1)k + T1,

E = (1 − b)E − αF (k, 1) − β(c0 + c1) + γ m,

and

τ0c0 + τ1c1 + T0 = T1,

and because the planner’s steady state is characterized by

u′(c∗
0) = γ + β

b
φ′(E ∗),
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v′(c∗
1) = γ + β

b
φ′(E ∗),

FK (k∗, 1) = γ

γ − α
,

c∗
0 + c∗

1 + k∗ + m∗ = F (k∗, 1),

E ∗ = (1 − b)E ∗ − αF (k∗, 1) − β(c∗
0 + c∗

1) + γ m∗,

then for the stationary competitive equilibrium under τ0, τ1, T0, T1 to be the
planner’s steady state it is necessary and sufficient that

β(1 − b) + γ (1 + τ0) = γ + β

b
,

β + γ

FK (k∗, 1)
(1 + τ1) = γ + β

b
,

(1 + τ0)c∗
0 + k∗ + m∗ = FL(k∗, 1) − T0,

(1 + τ1)c∗
1 = FK (k∗, 1)k∗ + T1,

i.e., that

τ0 = γ + β − [γ + β(1 − b)] b
γ b

,

τ1 = γ + β(1 − b)
(γ − α)b

− 1,

T0 = FL(k∗, 1) − (1 + τ0)c∗
0 − k∗ − m∗,

T1 = (1 + τ1)c∗
1 − FK (k∗, 1)k∗.

In other words, such a policy supports the planner’s steady state once the econ-
omy is there. There is then the additional problem of moving the economy to the
planner’s steady state .

To address this additional problem, it should be noticed that the choice
by agent t of c t

0, c t
1, kt , mt , Et , E e

t+1 depends on past decisions, in particular
on kt−1 through wt = FL(kt−1, 1), and on c t−1

1 , mt−1, Et−1 through the envi-
ronment dynamics. We shall show next that there exists a balanced-budget
policy toward generation t − 1 that makes it choose c∗

0, c∗
1, k∗ and E e

t = E ∗

(but not m∗ or Et−1 = E ∗), and another policy towards generation t , namely
the policy above, that makes it choose c∗

0, c∗
1, k∗ and E e

t+1 = E ∗ as well as m∗

and Et = E ∗. Once there the same policy keeps the economy at the planner’s
steady state.

In effect, agent t − 1’s choice at a perfect foresight equilibrium is char-
acterized by the conditions

u′(c t−1
0 ) = [β(1 − b) + γ (1 + τ0)]φ′(Et ),
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v′(c t−1
1 ) = [β + γ

FK (kt−1, 1)
(1 + τ1)]φ′(Et ),

(1 + τ0)c t−1
0 + kt−1 + mt−1 = FL(kt−2, 1) − T t−1

0 ,

(1 + τ1)c t−1
1 = FK (kt−1, 1)kt−1 + T t−1

1 ,

Et−1 = (1 − b)Et−2 − αF (kt−2, 1) − β(c t−1
0 + c t−2

1 + T t−2
1 ) + γ mt−2,

Et = (1 − b)Et−1 − αF (kt−1, 1) − β(c t
0 + c t−1

1 ) + γ mt−1,

given past decisions c t−2
1 , kt−2, mt−2, Et−2, and c t

0. Note that, for the govern-
ment’s budget to be balanced at t − 1, generation t − 2 receives as a transfer
T t−2

1 all the taxes raised at t − 1, i.e.,

T t−2
1 = τ0c t−1

0 + T t−1
0 .

Keeping this in mind, it turns out that there exist transfers T t−1
0 , T t−1

1 such
that under τ0, τ1 above generation t − 1 chooses c∗

0, c∗
1, k∗ and E e

t = E ∗. In ef-
fect, there is a solution in c t−1

0 , T t−1
0 , T t−1

1 , mt−1, Et−1, Et to the system above
with c t−1 = c∗

1 and kt−1 = k∗, i.e., a solution to

u′(c t−1
0 ) = [β(1 − b) + γ (1 + τ0)]φ′(Et ),

v′(c∗
1) = [β + γ

FK (k∗, 1)
(1 + τ1)]φ′(Et ),

(1 + τ0)c t−1
0 + k∗ + mt−1 = FL(kt−2, 1) − T t−1

0 ,

(1 + τ1)c∗
1 = FK (k∗, 1)k∗ + T t−1

1 ,

Et−1 = (1 − b)Et−2 − αF (kt−2, 1) − β((1 + τ0)c t−1
0 + c t−2

1 + T t−1
0 ) + γ mt−2,

Et = (1 − b)Et−1 − αF (k∗, 1) − β(c t
0 + c∗

1) + γ mt−1,

(where c t−1
1 and kt−1 have been fixed at the levels c∗

1 and k∗, respectively)
because, given the conditions characterizing the planner’s steady state, from
the second equation necessarily Et = E ∗, which in turn implies, from the
first equation, that c t−1

0 = c∗
0. The fourth equation directly determines

T t−1
1 = (1 + τ1)c∗

1 − FK (k∗, 1)k∗

and the three other equations constitute the following regular linear system
in mt−1, T t−1

0 , and Et−1

T t−1
0 + mt−1 = FL(kt−2, 1) − (1 + τ0)c∗

0 − k∗,

Et−1 + βT t−1
0 = (1 − b)Et−2 − αF (kt−2, 1) − β((1 + τ0)c∗

0 + c t−2
1 ) + γ mt−2,

(1 − b)Et−1 + γ mt−1 = Et + αF (k∗, 1) + β(c t
0 + c∗

1),
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with solution⎛
⎝ mt−1

T t−1
0

Et−1

⎞
⎠ = 1

A

⎛
⎝ (1 − b)β b − 1 1

γ 1 − b −1
−γβ γ β

⎞
⎠

⎛
⎝ FL(kt−2, 1) − (1 + τ0)c∗

0 − k∗

(1 − b)Et−2 − αF (kt−2, 1) − β((1 + τ0)c∗
0 + c t−2

1 ) + γ mt−2

Et + αF (k∗, 1) + β(c t
0 + c∗

1)

⎞
⎠ ,

where A = γ + β(1 − b) is the determinant of the matrix of coefficients.
Thus, under the following policy of consumption tax rates and lump-sum

transfers

τ t−1
0 = γ + β − [γ + β(1 − b)]b

γ b
,

τ t−1
1 = γ + β(1 − b)

(γ − α)b
− 1,

T t−1
0 = 1

A

⎛
⎝ γ

1 − b
−1

⎞
⎠

′

⎛
⎝ FL(kt−2, 1) − (1 + τ0)c∗

0 − k∗

(1 − b)Et−2 − αF (kt−2, 1) − β((1 + τ0)c∗
0 + c t−2

1 ) + γ mt−2

Et + αF (k∗, 1) + β(c t
0 + c∗

1)

⎞
⎠ ,

T t−1
1 = (1 + τ1)c∗

1 − FK (k∗, 1)k∗,

generation t − 1 makes at equilibrium the choices

c t−1
0 = c∗

0,

c t−1
1 = c∗

1,

kt−1 = k∗,

mt−1 = 1
A

⎛
⎝ (1 − b)β

b − 1
1

⎞
⎠

′

⎛
⎝ FL(kt−2, 1) − (1 + τ0)c∗

0 − k∗

(1 − b)Et−2 − αF (kt−2, 1) − β((1 + τ0)c∗
0 + c t−2

1 ) + γ mt−2

Et + αF (k∗, 1) + β(c t
0 + c∗

1)

⎞
⎠ ,
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Et−1 = 1
A

⎛
⎝−γβ

γ

β

⎞
⎠

′

⎛
⎝ FL(kt−2, 1) − (1 + τ0)c∗

0 − k∗

(1 − b)Et−2 − αF (kt−2, 1) − β((1 + τ0)c∗
0 + c t−2

1 ) + γ mt−2

Et + αF (k∗, 1) + β(c t
0 + c∗

1)

⎞
⎠

Et = E ∗.

Note that the policy above depends on elements known at the time t − 1
announces it, except for the transfer T t−1

0 , which depends as well on the
expected (and, at a perfect foresight equilibrium, the actual) first-period
consumption of generation t , c t

0. The choice of mt−1 and Et−1 by generation
t − 1 depends on it accordingly. Nevertheless, under the announcement at
t − 1 that the same consumption tax rates will be applied to generation t as
well, along with the stationary balanced-budget transfers implementing the
planner’s steady state, i.e., under the policy

τ t
0 = γ + β − [γ + β(1 − b)]b

γ b
,

τ t
1 = γ + β(1 − b)

(γ − α)b
− 1,

T0 = FL(k∗, 1) − (1 + τ0)c∗
0 − k∗ − m∗,

T1 = (1 + τ1)c∗
1 − FK (k∗, 1)k∗.

It is perfectly foreseen at t − 1 that at equilibrium c t
0 = c∗

0. More specifically,
under this policy generation t’s choice is c∗

0, c∗
1, k∗, m∗, Et = E ∗, and E e

t+1 =
E ∗, because this choice solves

u′(c t
0) = [β(1 − b) + γ (1 + τ0)]φ′(E e

t+1),

v′(c t
1) = [β + γ

FK (kt , 1)
(1 + τ1)]φ′(E e

t+1),

(1 + τ0)c t
0 + kt + mt = FL(k∗, 1) − T t

0,

(1 + τ1)c t
1 = FK (kt , 1)kt + T t

1,

Et = (1 − b)Et−1 − αF (k∗, 1) − β(c t
0 + c∗

1) + γ mt−1,

E e
t+1 = (1 − b)Et − αF (kt , 1) − β(c t+1,e

0 + c t
1) + γ mt ,

given that E e
t+1, c t+1,e

0 are perfectly foreseen to be E ∗, c∗
0 when the policy is

left unchanged for all generations from generation t onwards, and the next-
to-last equation is guaranteed to be satisfied from the choices of Et−1 and
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mt−1 by generation t − 1 at t − 1 (it is the last equation in generation t − 1’s
system).

Finally, note that at period t the policy is balanced as well (at t − 1 and
from t + 1 onwards it is so by construction), i.e.,

T t−1
1 = τ0c t

0 + τ1c t−1
1 + T t

0,

that is to say,

(1 + τ1)c∗
1 − FK (k∗, 1)k∗ = τ0c∗

0 + τ1c∗
1 + FL(k∗, 1) − (1 + τ0)c∗

0 − k∗ − m∗,

which boils down to

c∗
0 + c∗

1 + k∗ + m∗ = FK (k∗, 1)k∗ + FL(k∗, 1),

which is guaranteed by the feasibility of the planner’s steady state. �

A.6. Proof of Proposition 6

(1) It should be noticed that, under each policy above, each agent born in
period t − 1 chooses c t−1

0 = c∗
0, c t−1

1 = c∗
1, kt−1 = k∗, E e

t = E ∗ (but not mt−1 =
m∗ and not Et−1 = E ∗). So, young agents pay the following amounts �t−1

i of
taxes under each policy i6

Policy 1

�t−1
1 = τ0c∗

0 + T t−1
0 .

Policy 2

�t−1
2 = τ c∗

0 + T t−1
0 .

Policy 3

�t−1
3 = τ c∗

0 + T t−1
0 .

Policy 4

�t−1
4 = τ c∗

0 + τ t−1
w FL(kt−2, 1).

From the equations determining tax rates and lump-sum taxes and trans-
fers in Propositions 2–5, we know that τ0 = τ , and the lump-sum taxes im-
posed on the incomes of agents born in period t − 1 in policies 1, 2, and 3
are exactly identical. And it is straightforward from equation defining τ t−1

w
(in Proposition 5) to find that τ t−1

w FL(kt−2, 1) = T t−1
0 . Therefore, we have

�t−1
1 = �t−1

2 = �t−1
3 = �t−1

4 ,

6 Since the tax rates are unchanged over time, except for the tax rate on labor income,
we have removed the time superscripts for all tax rates, but not for the tax rate on labor
income in period t − 1.
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i.e., the agents born in period t − 1 pay the same amount of taxes when
young under each of the policies above.
(2) First of all, we prove that from period t onwards, agents are treated
equally under policies 1 and 2, and they are also treated equally under poli-
cies 3 and 4. It should be noted that from period t onwards, under each pol-
icy above, agents choose c t+i

0 = c∗
0, c t+i

1 = c∗
1, kt+i = k∗, mt+i = m∗, Et+i = E ∗,

and E e
t+i+1 = E ∗∀i ≥ 0. So, from period t onwards, each young agent has to

pay an amount of taxes corresponding to each alternative policy as follows:7

Policy 1

�1 = τ0c∗
0 + T0,1 = FL(k∗, 1) − c∗

0 − k∗ − m∗.

Policy 2

�2 = τ c∗
0 + T0,2 = FL(k∗, 1) − c∗

0 − k∗ − m∗.

Policy 3

�3 = τ c∗
0 + T0,3 = (1 − τp )FL(k∗, 1) − c∗

0 − k∗ − m∗.

Policy 4

�4 = τ c∗
0 + τw FL(k∗, 1) = (1 − τp )FL(k∗, 1) − c∗

0 − k∗ − m∗.

Hence, we have

�1 = �2 and �3 = �4. (A4)

Each old agent from period t onwards receives an amount of net trans-
fers (lump-sum transfer after subtracting taxes paid) corresponding to each
alternative policy as follows:

Policy 1

�1 = T1,1 − τ1c∗
1 = c∗

1 − FK (k∗, 1)k∗.

Policy 2

�2 = T1,2 − τ c∗
1 − τkFK (k∗, 1)k∗ = c∗

1 − FK (k∗, 1)k∗.

Policy 3

�3 = T1,3 − τ c∗
1 = c∗

1 − (1 − τp )FK (k∗, 1)k∗.

Policy 4

�4 = T1,4 − τ c∗
1 = c∗

1 − (1 − τp )FK (k∗, 1)k∗.

Hence, we have

�1 = �2 and �3 = �4. (A5)

7 In this proof, we add subscripts 1, 2, 3, and 4 into the corresponding lump-sum taxes and
lump-sum transfers to indicate that they belong to corresponding policy 1, 2, 3, or 4.



648 Journal of Public Economic Theory

(A4) and (A5) imply that agents are treated equally under policies 1 and 2,
and they are also treated equally under policies 3 and 4.

(2a) If α(γ + β) − βb2(γ − α) − αβb > (<)0, then τk, τp > (<)0, and
therefore

�1 = �2 > (<)�3 = �4

and

�1 = �2 < (>)�3 = �4,

which imply (2a) of Proposition 6.
(2b) If α(γ + β) − βb2(γ − α) − αβb = 0, then τk, τp = 0, and there-

fore

�1 = �2 = �3 = �4

and

�1 = �2 = �3 = �4,

i.e., in this case agents will be equally treated under all policies.
We prove next that, in this case policies 1, 2, and 3 coincide. In ef-

fect, from equations determining the taxes and transfers in Propositions 3
and 4, it is straightforward that policies 2 and 3 coincide. By comparing
equations in Proposition 3 (or Proposition 4) with equations in Proposi-
tion 2, we now complete the proof by showing that under the condition
α(γ + β) − βb2(γ − α) − αβb = 0 the tax rates τ0 and τ1, which are deter-
mined in Proposition 2, are equal.

We have

α(γ + β) − βb2(γ − α) − αβb = 0

⇔ γ + β = βb2γ

α
− βb2 + βb .

We transform τ0 and τ1 as follows:

τ0 = γ + β − [γ + β(1 − b)] b
γ b

=
βb2γ

α
− βb2 + βb − [γ + β(1 − b)] b

γ b
= βb

α
− 1

and

τ1 = γ + β(1 − b)
(γ − α)b

− 1

=
βb2γ

α
− βb2 + βb − βb

(γ − α)b
− 1 = βb

α
− 1.
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Therefore, τ0 = τ1 = τ . Hence, policy 1 also coincides with policies 2
and 3. �
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