In vitro fermentation of B-GOS: Impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children

Roberta Grimaldi, a* Drinalda Cela, b Jonathan R Swann, c Jelena Vulevic, d Glenn R Gibson, a George Tzortzis, d Adele Costabile, e

Department of Food and Nutritional Sciences, University of Reading, UK a; Democritus University of Thrace, Department of Molecular Biology and Genetics, Greece b; Division of Computational and Systems Medicine, Imperial College London, London, UK c; Clasado Research Services Ltd., Science & Technology Centre, University of Reading, UK d; Health Sciences Research Centre, Life Sciences Department, Whitelands College, University of Roehampton, UK e

*Correspond author: Roberta Grimaldi, BSc, MSc; r.grimaldi@pgr.reading.ac.uk; +447538209801; 226 Whiteknights, RG66AP, Reading, Berkshire, UK.

Running Head: B-GOS affects microbiota of autistic and non-autistic children
Abstract

Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1H-NMR. Consistent with previous studies, the microbiota of ASD children contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared to non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, F. prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short chain fatty acid production in both groups, and increased ethanol and lactate in autistic children.

Key words: Autism, gut microbiota, B-GOS, prebiotics, in vitro fermentation, SCFAs

Introduction
Autism typically develops in childhood, and it is considered as “a systemic spectrum disorder with multiple development trajectories with an incidence four times higher in males than in females” (Grossi 2014). In addition to behavioural traits, GI abnormalities such as diarrhoea, constipation, bloating, and abdominal pain are common in autism and they seem to contribute to, and exacerbate, overall behaviour of children (irritability, sleeplessness, posturing) (Van De Sande 2014). A cross talk exists between the gut microbiota and central nervous system (CNS) mediated via a range of different chemical, immunological and signalling interactions that form part of the gut-brain axis. Several studies have demonstrated the role of the gut microbiota in neurodevelopment and mental health (Foster 2013) and there is increasing evidence associating gut microbial dysbiosis with GI problems that might affect autistic children.

Bacteria such as Clostridium spp., Desulfovibrio spp. and Streptococcus spp. are dominant in the guts of ASD children. Finegold et al. found nine unique species of clostridia in autistic children compared to controls (Finegold 2002). Song et al., using qPCR analysis, found higher levels of C. boltea and Clostridium cluster I and XI (Song 2004). Furthermore, Parracho and co-authors, using FISH analysis, found greater number of species derived from the C. histolyticum group (Clostridium clusters I and II) (Parracho 2005). Desulfovibrio group was found to be ten times higher in the gut microbiota of autistic children compared to controls (Finegold 2010; Finegold 2011).

High-throughput sequencing has been used in more recent studies to determine bacterial composition of faecal samples from autistic children. The genera Prevotella, Coprococcus, and unclassified Veillonellaceae have been found in lower abundance in autistic individuals (Kang 2013) with high genus Sutterella spp. (Wang 2013; William
In addition, *Bifidobacterium* species decreased in ASD, comparing to the non-autistic control (De Angelis 2013).

Metabolic associations have also been identified with ASD and may be attributed to gut dysbiosis in autistic individuals. Abnormalities have been reported in tryptophan metabolism where higher amount of indole derivates in the blood and higher levels of IAG (indolyl-acryuloyl-glycine) in the urine of autistic children have been identified. Increased abundance of *Clostridium* spp. in the ASD-associated microbiota may contribute to these metabolic alterations as these organisms can metabolise tryptophan (Bingham 2003). Metabonomic studies also identified alterations in nicotinic acid metabolism (Yap 2010) and amino acid deficiencies in autism with restricted diets, modified gut microbial population and GI symptoms being suggested as potential contributors (Ming 2012).

Modulation of gut microbiota is an interesting potential strategy to reduce presence of harmful microorganisms and their metabolites that might be involved in negative stimulation of CNS and affect behaviour (Shaw 1995; Sandler 2000). Treating GI disorders in ASD with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but the evidence is scarce, especially for prebiotics.

The bifidogenic properties of B-GOS (Bimuno®, Clasado Biosciences Ltd., Buckinghamshire, UK) have been investigated *in vitro* and in human intervention studies involving healthy volunteers, and conditions that have a purported microbial input such as IBS, travellers’ diarrhoea and obesity (Tzortzis 2005; Depeint 2008; Vulevic 2008; Silk 2009; Drakoularakou 2009; Vulevic 2013). Recently, B-GOS was also shown to
reduce cortisol secretion and anxiety in healthy volunteers (Schmidt 2015). Cortisol is a reliable marker of stress and hypothalamic pituitary adrenal (HPA) axis activity. B-GOS supplementation lowered cortisol reactivity and modulated attention to emotional stimuli compared to a placebo group, supporting the hypothesis that gut microbiota might have a role in behavioural traits (Schmidt 2015).

Our study aimed to assess the effects of B-GOS (65% GOS content) on gut microbial ecology and metabolic end products of microbial fermentation. We used in vitro, three-stage, continuous gut model systems, inoculated with faecal samples of autistic and non-autistic children, that simulated different physicochemical characteristics of the proximal, transverse and distal colons.

Materials and methods

Substrate

The B-GOS product was supplied by Clasado Biosciences Ltd. The mixture was in syrup format consisting of 65% (w/v) GOS, 10.1% (w/v) lactose, 22% (w/v) glucose, 1.8% (w/v) galactose.

Faecal inoculation

Faecal samples were obtained from three non-autistic children and three autistic child donors (male, aged 5-10 years-old) who were free of any metabolic and gastrointestinal diseases, were not taking probiotic or prebiotic supplements, and had not taken antibiotics 6 months before faecal sample donation. Autistic children had formal diagnosis of mild autism. None of the children followed any specific or restricted diet.
All parents then provided written informed consent for use of their children’s faeces in the study. This study was approved by The University of Reading research Ethics Committee (UREC 15/20). Faecal samples were placed in an anaerobic jar (AnaeroJarTM 2.5 L, Oxoid Ltd) including a gas-generating kit (AnaeroGenTM, Oxoid). An aliquot of 20 g of samples were diluted in 100 ml anaerobic PBS (0.1 mol/L phosphate buffer solution, pH 7.4, w/w) and homogenised (Stomacher 400, Seward, West Sussex, UK) for 2 minutes at 240 paddle beats per minute. Samples were added to anaerobic fermenters within 15 minutes of voiding.

Three stage continuous culture gut model system

Physicochemical conditions in the colon were replicated in a continuous culture system, comprised of a cascade of three glass fermenters of increasing working volume connected in series. A small scale version of the validated system described by Macfarlane *et al.* (1998) was used in this study, with vessels (V) representing the proximal (V1, 80ml, pH=5.5), transverse (V2, 100ml, pH=6.2), and distal colon (V3, 120ml, pH=6.8). The systems were inoculated with 20% (wt:v) faecal homogenate from either non-autistic and autistic children volunteers in a growth medium (Macfarlane 1998). Following inoculation, the colonic model was run as a batch culture for 24 h in order to stabilise bacterial populations prior to the initiation of medium flow. After 24 h (T0), the medium flow was initiated and the system ran for at least 8 full volume turnovers to allow for steady state to be achieved (SS1). SCFA profiles (+/-5%) were assessed before starting B-GOS administration. Taking into account the operating volume (300 mL) and the retention time (48 h, flow rate 6.25 mL/h) of the colonic model system, a syrup containing GOS (2g/daily, equivalent to 1g of GOS) was added daily into V1. The syrup
was added to the system for at least a further 8 volume turnovers upon which steady state 2 (SS2) was achieved. Aliquots of 4.5 mL were removed at SS1 and SS2.

Short chain fatty acids (SCFAs) analysis by HPLC

The production of SCFAs in the fermentations was determined by HPLC (Merck, NJ) as previously described by Rodriguez-Colina *et al.* 2013. Twenty µL of each sample was injected with a run time of 45 min. Peaks were integrated using Atlas Lab managing software (Thermo Lab Systems, Mainz, Germany). Quantification of the samples was obtained through calibration curves of lactic, acetic, propionic, butyric and formic acids in concentrations 12.5, 25, 50, 75 and 100 mM.

In vitro enumeration of bacterial population by FISH-FCM

Bacterial composition in the gut models was analysed for using fluorescence *in situ* hybridization combined with flow cytometry (FISH-FCM). 750 µl of samples were centrifuged at 1136 x g for 5 min. Pellets were re-suspended in 375 µL of filtered PBS (using a 0.22 µm PVDF membrane) and fixed in 1125 µL of 4% (v/v) paraformaldehyde. After 4 hours incubation at 4 °C, samples were washed twice using 1 mL of PBS, re-suspended in 600 µL PBS-ethanol (1:1, v/v) and stored at -20 °C. Permeabilisation steps were performed using 30 µL of the fixed samples added to 500 µL PBS and centrifuged at 1136 x g for 3 min. Pellets were re-suspended using 100 µL of filtered TE-FISH (Tris/HCl 1 M pH 8, EDTA 0.5 M pH 8, distilled H2O, 0.22 µm PVDF membrane) containing lysozyme (1 mg/mL of 50,000 U/mg protein) and incubated for 10 min at room temperature. Solutions containing the samples were then vortexed and centrifuged at 1136 x g for 3 min. Pellets were washed with 500 µL PBS and centrifuged (1136 x g, 3 min). Hybridisations were performed by re-suspending the pellets in 150 µL of
hybridisation buffer (5M NaCl, 1M Tris/HCl pH8, 30% formamide, ddH$_2$O, 10% SDS), vortexed and centrifuged (1136 x g, 3 min). Pellets were then re-suspended in 1 mL of hybridisation buffer and 50 µL aliquoted into Eppendorf tubes. The probes used (Sigma Aldrich Ltd., Poole, Dorset, UK) are reported in Table 1 (Wallner 1993; Daims 1999; Langendijk 1995; Harmsen 1999; Manz 1996; Franks 1998; Walker 2005; Harmsen 2000; Hold 2003; Devereux 1992; Poulsen 1995; Harmsen 2002; Lay 2005). NON EUB338 and EUB338 I-II-III linked at their 5’ end either to Alexa488 and Alexa647. Group specific probes were linked with Alexa647 at their 5’ end. 4µL of each probe and 4 µL of Eub338 I-II-III (linked to Alexa488) were added to the working solution and incubated overnight at 35°C in a heating block. After 12 hours incubation, an aliquot of 150 µL hybridisation buffer was added to the working solution, vortexed and centrifuged (1136 x g, 3 min). 150 µL of supernatant was removed from each sample and the remaining volume centrifuged (1136 x g, 3 min). The pellets were washed with 200 µL of washing buffer (5M NaCl, 1M Tris/HCl pH8, 0.5 M EDTA pH8, ddH$_2$O, 10% SDS), homogenised by vortexing and incubated for 20 min at 37 °C in a heating block. Afterwards the samples were centrifuged (1136 x g, 3 min) and supernatants removed. Negative control samples (no probes added) were screened by flow cytometry to detect background before the probe samples were re-suspended in an appropriate amount of PBS. Samples were stored at 4 °C until determinations. Numbers of specific and total bacteria were determined taking into account dilution factor (DF), calculate from different volumes used in samples preparation steps, and events/µl obtained from NON EUB338 and EUB338 I-II-III probes analysed by flow cytometry.

Metabolic analysis by 1H-NMR
Three consecutive days of the three biological replicates for each group (autistic and non-autistic) of all time points (before and after treatment) were analysed by 1H-NMR (n=27, each group). Fermentation supernatants were defrosted, vortexed and centrifuged at 599 x g for 5 minutes. The supernatants were filtered using 0.22μm low protein binding Durapore polyvianlidene fluoride (PVDF) membranes (Millex; EMD Millipore, Billerica, MA, USA) and 400 μL transferred into fresh Eppendorf tubes. Filtered samples were combined with 200 μL of phosphate buffer (0.2 M (pH 7.4) in D2O plus 0.001% TSP), mixed by vortexing, centrifuged at 1136 x g for 10 minutes and then 550 μL was transferred into 5 mm NMR tubes for analysis. All NMR spectra were acquired on a Bruker Avance DRX 500 MHz NMR spectrometer (Bruker Biopsin, Rheinstetten, Germany) operating at 500 MHz. They were acquired using a standard one-dimensional (1D) pulse sequence [recycle delay (RD)-90°-t1-90°-tm-90°-acquire free induction decay (FID)] with water suppression applied during RD of 2 s, a mixing time Tm of 100 ms and a 90 pulse set at 7.70 μs. For each spectrum, a total of 128 scans were accumulated into 64 k data points with a spectral width of 12.001 ppm. The FIDs were multiplied by an exponential function corresponding to 0.3 Hz line broadening.

Data Preprocessing and Analysis

All spectra were manually phased, baseline corrected and calibrated to the chemical shift of TSP (3-(trimethylsilyl)-[2,2,3,3,2H₄]-propionic acid, δ 0.00). Spectra were digitised using an in-house MATLAB (version R2014a, The Mathworks, Inc.; Natwick, MA) script. The spectral region containing the water resonance was removed to minimise distortions in the baseline arising from imperfect water saturation. Median fold normalization was performed for both groups, non-autistic and autistic children. Before
and after administration of B-GOS, principal components analysis (PCA) using mean-centered data was applied. Orthogonal projection to latent structure discriminant analysis (OPLS-DA) models were constructed using unit variance scaling for pairwise comparisons of the different experimental groups and time points. Correlation coefficients plots were generated from the model outputs by back-scaling transformation to display the contribution of each variable (metabolites) to sample classification (e.g. before and after treatment). Colour represents the significance of correlation (R^2) for each metabolite to class membership. Predictive strength (Q^2_Y) of the models was obtained using a seven-fold cross validation method and these were validated using permutation testing (number of permutations=10,000).

Statistical analysis

Data from HPLC and FMC-FISH analyses were analysed using paired T-test in order to assess significance of results, comparing the two time points SS1 and SS2, before and after treatment respectively. Statistical significance was at $P<0.05$ for all analyses. Analyses were performed using GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA, USA).

Results

Bacterial enumeration

Changes in bacterial compositions in gut model systems are reported in Figure 1. The data showed lower numbers of bifidobacteria in ASD models compared to non-autistic ones. Significant increases in the *Bifidobacterium* spp, following addition of B-GOS to models containing both autistic and non-autistic samples were seen. In autistic models, a
significant increase of bifidobacteria occurred from 5.32 to 7.27 log$_{10}$ cells/ml (P<0.01), from 4.81 to 6.79 log$_{10}$ CFU/ml (P<0.001) and from 5.57 to 6.83 log$_{10}$ cells/ml (P<0.05), in V1, V2 and V3 respectively. A slight but significant increase in Clostridium cluster XI in V2 for autistic children was also found, as well as significant decrease in V2 in Veillonellaceae group from 6.06 to 5 log$_{10}$ CFU/ml (P<0.05). In non-autistic models, there was a significant increase in numbers of bifidobacteria in V1, from 5.83 to 7.16 log$_{10}$ cells/ml (P<0.01), and in V3, from 4.97 to 6.73 log$_{10}$ cells/ml (P<0.001) and in lactic acid bacteria (Lab158) in V3 from 5.13 to 6.01 log$_{10}$ cells/ml (P<0.05). Additionally, B-GOS slightly increased Roseburia spp. in V1 and 3 (P<0.05) and reduced Atopobium spp. from 6.06 to 5.28 log$_{10}$ cells/ml and F. prausnitzii from 6.78 to 5.27 log$_{10}$ cells/ml (P<0.05 for both) in the second vessel, while increasing Atopobium spp. from 5 to 5.92 log$_{10}$ cells/ml (P<0.05) in the third vessel of non-autistic models. In these models, numbers of Clostridium coccoides - Eubacterium rectale were also increased from 6.76 to 7.08 log$_{10}$ cells/ml (P<0.01) in V1 and Sutterella spp. significantly decreased in V1 from 7.05 to 6.49 (P<0.01) and V2 from 7.02 to 6.37 log$_{10}$ CFU/ml (P<0.05) after B-GOS administration. There was a general trend to increase all other bacterial groups analysed in all vessels but this was not significant. Exceptions were seen for Bacteroides (V1), Clostridial Cluster IX (V1), F. prausnitzii (V1), E. coli (V3), Ruminococcus spp., Clostridium leptum (V2), Sutterella spp. and Veillonellaceae (all vessels) in autistic models, and for Clostridium coccoides - Eubacterium rectale (V2), Atopobium spp. (V1), Clostridial Cluster IX (V2), Clostridium cluster XI (V1, V2), E. coli (V2), Sutterella spp. and Veillonellaceae (all vessels) in non-autistic models that slightly decreased.

Short chain fatty acids production
SCFAs concentrations are presented in Figure 2. Our data show a lower concentration of butyrate and propionate in autistic models, compared to non-autistic models, but no differences in acetate before adding B-GOS into the system. After administration of B-GOS, acetate and butyrate were the main end products of microbial fermentation. Supplementation of B-GOS to gut models inoculated with faecal samples from autistic children, led to a significant increase of acetate and butyrate in V1 and 2, simulating the proximal and transverse colons (P<0.05) respectively, while concentration of propionate was decreased (P<0.05) in V3 mimicking distal colon. In models simulating the colon of non-autistic children, the fermentation of B-GOS mediated significant production of acetate (P<0.05) and butyrate (P<0.001) in V2 and 3, simulating the transverse and distal colon respectively. There was no effect on propionate.

1H-NMR Spectroscopic Profiles

PCA analysis was performed on mean-centered data to summarise variance with the dataset. The scores plot (PC1 versus PC2) shown in Figure 3A, showed separation between autistic and non-autistic models after treatment, indicating that B-GOS supplementation contributed to the largest source of variance in the metabolic data. Comparison of the spectra profiles from gut models before and after treatment identified that a number of metabolites changed following B-GOS supplementation to characterise the metabolic variation associated with ASD, B-GOS supplementation and differences in microbial response to B-GOS between the ASD and non-ASD microbiota. The results of these analysis are summarised in Figure 3B. A significant OPLS-DA model was obtained comparing the metabolic profiles of the autistic and non-autistic models at baseline (Q^2_Y = 0.07; P < 0.05; Figure SC-I). Supernatants from the autistic models contained greater
amounts of ethanol, glycine, tyrosine, tyramine, 5-aminopentoanate, acetate, 4-aminobutyrate and betaine, compared to the non-autistic models and lower amounts of butyrate. B-GOS supplementation was found to modulate the metabolic profile of the autistic models ($Q^2_Y = 0.08; P < 0.05$) increasing ethanol, lactate, acetate and butyrate and decreasing propionate and trimethylamine (Figure SB-I). Increased butyrate and acetate production was also observed in the non-autistic models following the addition of BGOS ($Q^2_Y = 0.12; P < 0.01$; Figure SB-II). Comparing the metabolic profiles of the autistic and non-autistic models after B-GOS feeding ($Q^2_Y = 0.17; P < 0.01$) revealed that some of the metabolic variation was reduced (Figure SC-II). There was no longer variation in 4-aminobutyrate between the models, however the difference in ethanol and acetate between autistic and non-autistic models was increased being higher in the autistic models.

Discussion

Recent studies have focused on the effect of pre/probiotics on the gut-brain axis (Liu 2015). This study investigated the influence of B-GOS on a small scale, *in vitro*, gut model system inoculated with faeces from autistic and non-autistic children. The results showed a positive modulation of bacterial populations, using an automated FISH method combined with flow cytometry. We also assessed metabolic profiles and key metabolites in both test groups.

Lower concentrations of SCFAs have previously been found in ASD children by Adams *et al.* suggesting a reduced fermentation capacity by the ASD microbiota. It was hypothesised that this was due to a compromised microbiota characterised by a lower number of bifidobacteria, consistent with microbial signatures observed here (Adams...
2011). Concomitant with these population changes, functional alterations were also observed in both autistic and non-autistic models with acetate and butyrate, the main end products of microbial fermentation, being increased.

Recent studies have focused on SCFAs and their effect on the CNS. These fermentation products can cross the blood-brain barrier and might influence early brain development. The synthesis of neuroactive compounds such as dopamine and serotonin can be modulated by SCFA and they are able to produce reversible psychological and physiological changes in rats similar to those found in ASDs (Wang 2011). Experimental evidence using intraventricular infusion in rats indicates that propionic acid can produce brain and behavioural changes similar to ASD (MacFabe 2008).

Recent ASD studies have shown increase in numbers of *Sutterella* spp. and decrease in Veillonellaceae group. In this study, the results did not show any significant differences between ASD and non-ASD group. However, a general decrease in those bacterial groups after treatment was highlighted, suggesting that B-GOS administration might have an impact on the growth of these ASD-associated bacteria.

Following B-GOS feeding, the microbiota of autistic children produced greater amounts of ethanol and lactate while the amount of amino acids and the SCFA propionate, present in the model, was reduced. These metabolic alterations were not observed when the faecal microbiota of non-autistic individual were fed B-GOS. In a healthy colon, lactate production is generally low due to its conversion to other organic acids by many bacteria and because lactate can be used as a substrate for dissimilation of sulphate by some bacteria (e.g. *Desulfovibrio* spp.) (Flint 2014; Marquet 2009; Fite 2004). In ASD children presence of lactate is interesting because its accumulation has
been associated to neurological problems, in particular studies show the effect of lactate infusions on anxiety and panic disorders (Dillon 1987; Cowley 1987). Cowley and colleagues in their findings showed that lactate infusion in patients suffering from panic disorder, provoke higher panic symptoms reaction compared to controls (Dillon 1987). Dillon et al. have showed similar results in in vivo, where panic and anxiety reaction has been measured using Acute Panic Inventory (API) scores. After lactate infusions the scores were much higher in patients with panic and anxiety disorders compared to normal controls (Cowley 1987).

The lysine degradation product, 5-aminopentanoic acid, was also higher in the autistic compared to the non-autistic models. This metabolite can be produced both endogenously or through the bacterial catabolism of lysine. It is believed to act as a methylene homologue of γ-aminobutyric acid (GABA) and functions as a weak GABA agonist (Callery 1985). Interestingly, GABA was also higher in the autistic models compared to the non-autistic models pre-treatment but these differences were not present following B-GOS treatment. Certain bacteria, such as lactobacilli, are able to produce molecules that acts as neurotransmitters and directly affect the brain (Wall 2014). In our results, its reduction might be due to changes in gut microbiota composition.

Ethanol was found in higher amount in ASD children comparing to non-ASD. The vast majority of bacteria form ethanol from acetyl-CoA and the glycolytic pathway (Macfarlane 2003). Microorganisms are able to oxidase ethanol and the impact of bacterial overgrowth on ethanol production has previously been studied (Baraona 1986). Metabolism of ethanol can lead to the production of toxic end-products such as acetaldehyde, which may affect the gastrointestinal mucosa. The role of acetaldehyde in
ASD has been recently evaluated in particular for its role in oxidative stress and DNA damage. Under healthy conditions, ethanol is converted into acetic acid in the liver by a two-step process involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Mutation of the ALDH gene has been shown to increase the accumulation of acetaldehyde and result in cancers within different regions of the gastrointestinal tract and Alzheimer’s disease (Jurnak 2015). The potential role of this toxic compound in neurological disorders, including autism, warrants further exploration.

Conclusions

This in vitro study showed promising and positive results in that supplementing the microbiota of ASD children with 65%B-GOS may manipulate the gut bacterial population and alter metabolic activity towards a configuration that might represent a health benefit to the host. However, further work will be required to assess such changes in an in vivo human intervention study.

Competing interests

The authors declare that they have not competing interests

Authors’ contributions

RG carried out the experiments and drafted the manuscript. DC helped in experimental work. JRS assisted with NMR analyses. GRG and AC were involved in designing and coordination of the study and revising the manuscript critically for important intellectual content. JV and GT are employed by Clasado Biosciences Ltd, who provided the B-GOS product, marketed as Bimuno(R), used within this research. There are no patents,
products in development or other marketed products to declare. This does not alter the authors adherence to all the FEMS policies on sharing data and materials. All the authors reviewed the final version of the manuscript. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

References

Callery PS, Geelhaar LA. 1-Piperideine as an *in vivo* precursor of the gamma aminobutyric acid homologue 5-aminopentanoic acid. *J Neurochem* 1985;45:946-948.

Jurnak F. The pivotal role of aldehyde toxicity in autism spectrum disorder: the

Shaw W, Kassen E, Chaves E. Increased urinary excretion of analogs of Krebs cycle...

Walker AW, Duncan SH, Mewilliam EC, *et al.* pH and peptide supply can radically alter

Table 1. Oligonucleotide probes used in this study for FISH-FCM analysis of bacterial populations. +:

These probes are used together in equimolar concentration of 50 ng/µl.

<table>
<thead>
<tr>
<th>PROBE NAME</th>
<th>SEQUENCE (5’ TO 3’)</th>
<th>TARGET GROUP</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non Eub</td>
<td>ACTCCTACGGGAGGCAGC</td>
<td></td>
<td>Wallner 1993</td>
</tr>
<tr>
<td>Eub338 I +</td>
<td>GCT GCC TCC CGT AGG AGT</td>
<td>Most Bacteria</td>
<td>Daims 1999</td>
</tr>
<tr>
<td>Eub338 II +</td>
<td>GCA GCC ACC CGT AGG TGT</td>
<td>Planctomycetales</td>
<td>Daims 1999</td>
</tr>
<tr>
<td>Eub338 III +</td>
<td>GCT GCC ACC CGT AGG TGT</td>
<td>Verrucomicrobiales</td>
<td>Daims 1999</td>
</tr>
<tr>
<td>Bif164</td>
<td>CAT CCG GCA TTA CCA CCC</td>
<td>Most Bifidobacterium spp. and Parascardovia denticolens</td>
<td>Langendijk 1995</td>
</tr>
<tr>
<td>Lab158</td>
<td>GGTATTAGCAYCTGTTCCA</td>
<td>Most Lactobacillus, Leuconostoc and Weisella spp.; Lactococcus lactis; all Vagococcus, Enterococcus, Melisococcus, Tetragenococcus, Catellicoccus, Pediococcus and Paralactobacillus spp</td>
<td>Harmsen 1999</td>
</tr>
<tr>
<td>Bac303</td>
<td>CCA ATG TGG GGG ACC TT</td>
<td>Most Bacteroidaceae and Prevotellaceae, some Porphyromonadaceae</td>
<td>Manz 1996</td>
</tr>
<tr>
<td>Clit135</td>
<td>GTTATCCGTGTGACAGGG</td>
<td>Some of the Clostridium lituseburense group (Clostridium cluster XI)</td>
<td>Manz 1996</td>
</tr>
<tr>
<td>Erec482</td>
<td>GCT TCT TAG TCA RGT ACCG</td>
<td>Most of the Clostridium coccoideae-Eubacterium rectae group (Clostridium cluster XIVa and XIVb)</td>
<td>Manz 1996</td>
</tr>
<tr>
<td>Chis150</td>
<td>TTATGCGGTATTAATCTYCCTTT</td>
<td>Most of the Clostridium histolyticum group (Clostridium cluster I and II)</td>
<td>Franks 1998</td>
</tr>
<tr>
<td>Rrec584</td>
<td>TCA GAC TTG CCG YAC CGC</td>
<td>Roseburia sub cluster</td>
<td>Franks 1998</td>
</tr>
<tr>
<td>Prop853</td>
<td>ATT GCG TTA ACT CCG GCAC</td>
<td>Clostridial Cluster IX</td>
<td>Walker 2005</td>
</tr>
<tr>
<td>Ato291</td>
<td>GGT CGG TCT CTC AAC CC</td>
<td>Atopobium, Collinsella, Olsenella and Eggerthella spp.; Cryptobacterium curtum; Mycoplasma equigenitalium and Mycoplasma elephantis</td>
<td>Harmsen 2000</td>
</tr>
<tr>
<td>Fprau655</td>
<td>CGCCTACCTCCTCAGC</td>
<td>Faecalibacterium prausnitzii and related sequences</td>
<td>Hold 2003</td>
</tr>
<tr>
<td>DSV687</td>
<td>TAC GGA TTT CAC TCC T</td>
<td>Most Desulfovibrioales (excluding Lawsonia) and many Desulfuromonales</td>
<td>Devereux 1992</td>
</tr>
<tr>
<td>EC1531</td>
<td>CACCCTAGTCCTCCTCATCA</td>
<td>Escherichia coli BJ4</td>
<td>Poulsen 1995</td>
</tr>
<tr>
<td>Rbro730 +</td>
<td>TAAAGCCAGYAGGCCGC</td>
<td>Clostridium sporosphaeroides, Ruminococcus bromii, Clostridium leptum</td>
<td>Harmsen 2002; Lay 2005</td>
</tr>
<tr>
<td>Rfla729 +</td>
<td>AAA GCC CAG TAA GCC GCC</td>
<td>Ruminococcus albus, R. flavefaciens</td>
<td>Harmsen 2002; Lay 2005</td>
</tr>
<tr>
<td>Veir723</td>
<td>ACA CAG TCC AGA AAG GCG</td>
<td>Veillonellaceae</td>
<td>Kong 2012</td>
</tr>
</tbody>
</table>
Figure 1. Bacterial groups detected by FISH-FCM (Log10 CFU/ml ± SD) in culture broth recovered from each vessel (V1, V2 and V3) of a colonic model before (SS1) and after (SS2) the daily administration of B-GOS (2g/d, equivalent to 1g GOS). Significant difference after the treatment: * P<0.05; **P<0.01; ***P<0.001. Probes: Total bacteria (Eub338I-II-III), *Bifidobacterium* spp. (Bif164), *Lactobacillus* spp. (Lab158), Most Bacteroidaceae and Prevotellaceae (Bac303), *Clostridium coccoides-Eubacterium rectale* group (Erec482), *Roseburia* sub cluster (Rrec584), *F. prausnitzii* (Fprau655), *Clostridium* cluster XI (Clit135), *Sutterella* spp. (SUBU1237), Veillonellaceae (VEI732), *Atopobium* spp. (Ato291). (A) autistic children; (B) non-autistic children.
Figure 2. HPLC analysis. Acetate, propionate and butyrate concentrations in culture broths recovered from vessels (V1, V2 and V3) of *in vitro* gut model systems before (SS1) and after (SS2) administration of B-GOS (1g/daily GOS). Results are reported as means (mM) of the data (n=3): A) autistic children and B) non-autistic children. Significant difference after the treatment: * P<0.05; ***P<0.001.
Figure 3. 1H-NMR data analysis. (A) PCA score plot show a separation between models inoculated with stool samples of non-ASD and ASD children after administration of B-GOS. Dark and light blue dots represent replicates of samples from gut models inoculated with faecal samples of autistic children, before (SS1) and after (SS2) treatment respectively. Yellow and red dots represent replicates of samples from gut models inoculated with faecal samples of non-autistic children, before (SS1) and after (SS2) treatment respectively. (B) Correlation coefficients indicating the associations of identified metabolites with autism and their alteration upon B-GOS administration. SS1: before treatment; SS2: after treatment. White cells represent no significant correlations.