Cannabidiol normalises medial temporal, midbrain and striatal dysfunction in people at clinical high-risk for psychosis

Sagnik Bhattacharyya¹*, MBBS, MD, PhD; Robin Wilson¹**, MBBS, MRCPsych; Elizabeth Appiah-Kusi¹*, MSc; Aisling O’Neill¹**, MBBS, MSc; Michael Brammer², PhD; Jesus Perez³, MBBS, MD, PhD; Robin Murray¹, DSc, FRCPsych, FRs; Paul Allen¹*, PhD; Matthijs Bossong¹,5, PhD; Philip McGuire¹, MD, PhD, FRCPsych.

¹Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, London SE5 8AF, UK
²Department of Neuroimaging, Centre for Neuroimaging Sciences, PO Box 089, King’s College London, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK
³CAMEO Early Intervention services, Cambridgeshire and Peterborough NHS Foundation trust
⁴Department of Psychology, University of Roehampton, London, UK
⁵Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands

** These authors contributed equally to this work

* Corresponding Author:
Dr Sagnik Bhattacharyya
Department of Psychosis Studies & Psychosis Clinical Academic Group
King’s College London, Institute of Psychiatry
6th Floor, Main Building, PO Box 067, De Crespigny Park, London, SE5 8AF
Tel: +44 20 78480955; Fax: +44 20 78480976;
E-mail: sagnik.2.bhattacharyya@kcl.ac.uk

Number of figures: 2; Number of tables: 3
Supplementary Material: Supplementary Methods (eMethods), supplementary Results (eResults), 2 supplementary figures and 2 supplementary tables and 2 supplementary Discussion sections (eDiscussion)

Word Count:
Abstract: 350 words
Text: 3000 words
KEY POINTS:

Question: What are the neurocognitive mechanisms that underlie the putative therapeutic effects of cannabidiol in psychosis?

Findings: We show that a single oral dose of cannabidiol modulated activation in the striatum, medial temporal cortex and midbrain in clinical high-risk (CHR) patients, such that in each of these regions, the level of activation following administration of cannabidiol to CHR patients was intermediate between that in healthy controls and in CHR patients under placebo.

Meaning: These results suggest that cannabidiol may normalize dysfunction in these brain regions, which are critically implicated in psychosis. This may underlie its therapeutic effects in psychosis.
ABSTRACT:

Importance: Cannabidiol (CBD) has antipsychotic effects in humans, but how these are mediated in the brain remains unclear.

Objective: To investigate the neurocognitive mechanisms that underlie the therapeutic effects of CBD in psychosis.

Design: Parallel-group, double-blind, randomized, placebo-controlled design in people at clinical high risk (CHR) for psychosis. Healthy control (HC) participants were studied under identical conditions without any drug treatment.

Setting: Academic Health Science Centre, UK

Participants: Thirty-three medication-naive CHR and 19 HC participants.

Intervention: CHRs received a single oral dose of either 600mg of CBD (CHR-CBD) or a placebo (CHR-PLB). HCs were not given any drug. All participants were then studied using functional magnetic resonance imaging (fMRI) whilst performing a verbal learning task.

Main Outcomes and Measures: Brain activation during verbal encoding and recall, indexed using the blood-oxygen level-dependent haemodynamic response (BOLD) fMRI signal.

Results: Seventeen CHR-PLB [mean (SD) age= 25.35 (5.24) years; 10 females] and 16 CHR-CBD [mean (SD) age= 22.43 (4.95) years; 6 females] were compared with 19 HC [mean (SD) age= 23.89 (4.14) years; 8 females] participants. Brain activation (indexed using median sum of squares ratio of the BOLD effects model component to residual sum of squares) was analyzed from 16 CHR-PLB, 15 CHR-CBD and 19 HC. CHR-PLB had reduced activation relative to HC in the right caudate during encoding (CHR-PLB: median=-0.027, IQR=-0.041, -0.016; HC: median=0.020, IQR=-0.022, 0.056; p<0.001), and in the parahippocampal gyrus and midbrain during recall (CHR-PLB: median=0.002, IQR=-0.016, 0.010; HC: median=0.035, IQR=0.015, 0.039; p=0.000096). Within these three regions, activation in the CHR-CBD was greater than in CHR-PLB, but lower than in HCs (parahippocampal gyrus/ midbrain- CHR-PLB: median=-0.007, IQR=-0.019, 0.008; CHR-CBD: median=-0.013, IQR=-0.027, 0.002; HC: median=0.034, IQR= 0.005, 0.059; p<0.005): the level of activation was thus intermediate to that in the other two groups. There were no significant group differences in task performance.
Conclusions and relevance: CBD may partially normalize alterations in parahippocampal, striatal and midbrain function associated with the CHR state. As they are critical to the pathophysiology of psychosis, the influence of CBD at these sites could underlie its therapeutic effects on psychotic symptoms.
Introduction

Epidemiological and clinical studies have implicated regular cannabis use as a risk factor for the development of psychosis, and for poor clinical outcomes after its onset. Psychosis is also associated with alterations in the endocannabinoid system (reviewed here), independent of exposure to cannabis. The endocannabinoid system thus represents a potential therapeutic target for psychosis. Its main central receptor, the CB1 cannabinoid receptor is ubiquitous in brain and modulates the function of neurotransmitters, thought to be critically perturbed in psychosis, including dopamine and glutamate. The constituent of cannabis responsible for its acute psychotomimetic effects and its association with the development and relapse of psychosis is delta-9-tetrahydrocannabinol (THC). In contrast, Cannabidiol (CBD), one of the major non-psychoactive constituents of cannabis, has broadly opposite neural and behavioural effects. In particular, we have shown that CBD has opposing effects to THC on activation in the striatum during verbal memory and salience processing, on amygdala responses during emotional processing, and on the functional connectivity of these regions. Furthermore, pre-treatment with CBD blocks the experimental induction of psychotic symptoms by THC, and clinical studies indicate that CBD has antipsychotic and anxiolytic properties in patients with mental disorders. CBD was non-inferior to antipsychotic medication in a 4-week clinical trial in first-episode psychosis, and improved psychotic symptoms when used as an adjunct to antipsychotic medication in a 6-week trial in patients with chronic psychosis.

Although there is good evidence that CBD can have beneficial effects on psychotic symptoms, how these effects are mediated in the brain remains unclear. The present study sought to address this issue by examining the effects of CBD in individuals at clinical high-risk for psychosis (CHR). CHR subjects typically experience clinically significant psychotic symptoms that are qualitatively similar to those seen in patients with frank psychosis, and are associated with high levels of distress. Contemporary preclinical models propose that psychosis involves a perturbation of activity in the medial temporal lobe (MTL) that drives subcortical dopamine dysfunction through projections to the striatum and midbrain. Moreover neuroimaging studies in CHR subjects indicate that the later onset of psychosis is linked to alterations in parahippocampal structure and function and to elevated striatal and midbrain dopamine activity.
In the present study, on the basis of previous studies, we expected that CHR subjects would display altered responses in the MTL, midbrain and striatum relative to HC. Our main hypothesis was that CBD would attenuate functional abnormalities in this triad of regions. While the MTL is critical for new learning16, the midbrain36-39 and striatum39-43 also play a key role in supporting the encoding and updating of contextual information in memory. Therefore, we employed the verbal paired associate learning task (VPA), which engages these processes and brain regions13,14. Furthermore, transient psychotomimetic effects of THC have been related to its modulation of striatal13 and midbrain14 function and CBD17 has been shown to oppose these striatal effects of THC during this task.

\textbf{METHODS}

Detailed methods are included as part of supplementary material (see eMethods and Figure S1A for CONSORT diagram). Thirty-three antipsychotic medication-naïve CHR participants28 were recruited from early intervention services in the UK. Nineteen age-matched (± 3 years) healthy controls (HC) were recruited by local advertisement. All participants provided written informed consent. Individuals with history of previous psychotic or manic episode, neurological disorder or current DSM-IV diagnosis of substance dependence, IQ less than 70 and contraindication to MRI or treatment with CBD were excluded.

Psychopathology was measured using Comprehensive Assessment of At-Risk Mental States (CAARMS; positive and negative symptoms)28 and state-trait anxiety inventory- state subscale (STAI-S)44 at baseline before drug administration. Two CHR participants were excluded, one from each of the CBD-treatment and placebo-treatment arms, after failing to correctly perform the imaging task, resulting in \(n=15 \) participants in the CHR-CBD group and \(n=16 \) in the CHR-PLB group.

Using a parallel-group, double-blind, placebo-controlled design, CHR participants were randomized to either CBD (CHR-CBD) or placebo (CHR-PLB) treatment and received a single oral dose of 600mg of CBD (THC-Pharm), a dose previously effective in established psychosis26, or an identical placebo capsule respectively. Three hours after taking the CBD or placebo capsule, participants underwent functional magnetic resonance imaging (fMRI) whilst performing a VPA task that we have previously used in conjunction with fMRI and pharmacological challenge13,14, including CBD administration17 (see eMethods for
justification of CBD dose and time of fMRI scanning, and Figure S1B for CBD plasma levels). HC
participants were investigated under identical conditions, but did not receive any study drug.
All participants were asked to have refrained from cannabis for 96 hours, alcohol for a minimum of 24 and
nicotine for 6 hours before scanning and any other recreational drugs for two weeks before the study day. A
urine sample prior to scanning was used to screen for use of illicit drugs.

The VPA task (described in detail in eMethods) comprised 3 conditions (encoding, recall, and baseline), with
stimuli presented visually in blocks and accuracy of responses recorded online. During encoding, participants
were shown word-pairs and asked to say ‘yes’ or ‘no’ aloud after each pair to indicate whether they went well
together. The same word pairs were presented in the encoding condition 4 times, so that the associations could
be learned over repeated blocks. During recall, one of the words from previously presented pairs was shown
and participants were asked to say the word that it had previously been associated with. Subjects said “pass” if
they could not recall the missing word. During baseline, participants viewed a pair of blank blue rectangles of
identical dimensions as in the encoding/recall condition.

For each participant, the blood oxygen level–dependent haemodynamic (BOLD) response of the brain during
each encoding and recall block, measured using a 3T MRI scanner (gradient echo sequence axially; 39 x 3mm
slices, 3.3mm slice gap; 30ms echo time; compressed acquisition with a 2s repetition time and 3s silence), was
contrasted with that during the baseline condition.

Analysis | fMRI data were analyzed with software developed at the Institute of Psychiatry, Psychology and
Neuroscience (XBAM, version 4.1), using a nonparametric approach to minimize assumptions
Images were corrected for motion47, spatially smoothed and the experimental design was convolved with two
gamma-variate functions to model the BOLD response. Using the constrained BOLD effects model, a best fit
between the weighted sum of these convolutions and the change over time at each voxel was computed48.
Following least-squares fitting of this model to the time series at each voxel, a sum of squares (SSQ) ratio
statistic (ratio of the model component to residual sum of squares) was estimated for the encoding and recall
conditions relative to baseline. Significance of the estimated SSQ values at each voxel was determined by permutation testing49,50. SSQ ratio maps for each individual were transformed into standard stereotactic space51,45 and group activation maps were computed for each group in each drug condition by determining the median SSQ ratio at each voxel (over all individuals) in the observed and permuted data maps. Group activation maps for each condition were compared against each other (CHR-PLB vs HC and CHR-CBD vs CHR-PLB) using non-parametric repeated-measure analysis of variance (ANOVA)45. The voxel-wise statistical threshold was set at \(p=0.05 \) and the cluster-wise thresholds were adjusted to ensure that the number of false positive clusters per brain would be \(<1\) (regions that survived this critical statistical threshold and the corresponding \(p \) values are reported).

The BOLD response in each subject was modelled using only trials associated with correct responses in the recall condition. To test the hypothesis that activation in the CHR-CBD group would be intermediate between that of HC and CHR-PLB subjects we examined whether a linear relationship in brain activation (CHR-PLB \(> \) CHR-CBD \(> \) HC or CHR-PLB \(< \) CHR-CBD \(< \) HC) existed within the whole brain.

Recall performance was analysed using repeated-measures analysis of variance. Correlational analysis between recall score and brain activation was conducted using Pearson’s test (two-tailed).

RESULTS

There were no significant group differences between the CHR-PLB and HC and CHR-PLB and CHR-CBD groups in demographic and clinical variables, except that the CHR-PLB group had fewer years of education than the HC group (Table 1).

fMRI results

Main effects of encoding and recall in healthy controls

In HC, relative to the baseline condition, the encoding condition was associated with activation in the left anterior cingulate cortex, the right caudate, the left precentral gyrus, and the cuneus (eTable 1). The recall condition relative to the baseline condition was associated with activation in the left parahippocampal and left
transverse temporal gyri, and decreased activation in the left middle occipital, the right lingual and inferior frontal gyri (eTable 2).

Differences in activation associated with the CHR state (CHR-PLB vs HC)

Encoding | During the encoding condition, CHR-PLB participants showed greater activation than HC in the right middle frontal gyrus and adjacent parts of the inferior frontal gyrus and insula; the left insula/ claustrum and adjacent inferior frontal gyrus and putamen; the right precentral gyrus and adjacent postcentral gyrus and inferior parietal lobule; and the left cerebellum and adjacent lingual gyrus (Table 1, Figure 1A). Relative to CHR-PLB, HC showed greater activation in the right subcallosal gyrus/ caudate head; the left anterior cingulate; the right caudate tail extending to the posterior cingulate cortex; and in the right precuneus and cuneus (Table 2A, Figure 1A).

Recall | During the recall condition, the CHR-PLB participants showed greater activation than HC in clusters encompassing the right inferior frontal, middle frontal and precentral gyri, and insula; the right cuneus, fusiform, lingual gyri and posterior cingulate gyri; and the left cerebellum and middle occipital and fusiform gyri (Table 2B, Figure 1B). HC showed greater activation in four clusters in the left hemisphere: these involved the parahippocampal gyrus, midbrain, cerebellum and thalamus; superior temporal and middle temporal gyri; superior and transverse temporal gyri; and middle frontal gyrus (Table 2B, Figure 1B).

Effect of CBD on activation in CHR participants (CHR-PLB vs CHR-CBD)

Encoding | During the encoding condition, the CHR-PLB group showed greater activation than the CHR-CBD group in a cluster in the left parahippocampal gyrus that extended into the superior temporal gyrus and cerebellum, but less activation in the precentral gyrus (Table3A, Figure 1C).

Recall | During the recall condition, the CHR-PLB showed less activation than the CHR-CBD group in three clusters, with foci in the left cingulate gyrus and adjacent body of caudate; the right precentral gyrus, extending
to the cingulate gyrus; and in the medial frontal gyrus (Table 3A, Figure 1D). There were no clusters of greater activation in the CHR-PLB than the CHR-CBD group.

Between-group linear analysis

This analysis identified clusters where there was a linear pattern of activation across the 3 groups, such that activation in the CHR-CBD group was intermediate to that in the CHR-PLB and HC groups.

Encoding | There were 7 clusters where encoding-related engagement was greatest in the CHR-PLB, lowest in the HC group, and at an intermediate level in the CHR-CBD group. These involved the right inferior frontal and middle frontal gyri and insula; left insula and putamen; 3 clusters in the precentral gyri; right fusiform gyrus and adjacent cerebellum; left cerebellum and fusiform gyrus (Table 3B, Figure 2A-B; Also see supplementary figure S2A displaying all regions). The right inferior frontal gyrus, left insula and precentral clusters overlapped with the regions where the CHR-PLB showed increased activation during encoding relative to the HC group in the earlier paired comparison.

There were 4 clusters where there was a linear between-group relationship in the opposite direction (CHR-PLB<CHR-CBD<HC). These involved the left caudate head and putamen and anterior cingulate cortex; right subcallosal gyrus and caudate head; tail of the right caudate and adjacent posterior cingulate cortex; and the precuneus and right cuneus. In these clusters, activation during encoding was greatest in the HC group, lowest in the CHR-PLB group, and at an intermediate level in the CHR-CBD group (Table 3B, Figure 2A-B; Also see supplementary figure S1A displaying all regions). All 4 clusters overlapped with clusters where HC had shown greater activation than the CHR-PLB group during encoding in the previous paired comparison.

Recall | In 3 clusters, recall-related engagement was greatest in the CHR-PLB participants, and lowest in HC, and at an intermediate level in the CHR-CBD participants. These clusters comprised the right inferior frontal gyrus extending to ipsilateral middle frontal gyrus and insula; precuneus extending to cuneus, lingual, middle
occipital and fusiform gyri and cerebellum on the right side; and cerebellum extending to fusiform, lingual and inferior occipital gyri on the left side (Table 3C, Figure 2C-D; Also see supplementary figure S2B displaying all regions). All 3 clusters overlapped with clusters where the CHR-PLB had shown greater activation than HC during recall in the paired comparison.

Conversely, there were 4 clusters where activation was greatest in the HC group, lowest in the CHR-PLB group and at an intermediate level in the CHR-CBD participants. These included the left parahippocampal gyrus, midbrain and cerebellum; left thalamus; the left transverse temporal gyrus extending to superior temporal gyrus; and the left precentral and cingulate gyri and caudate body (Table 3C, Figure 2C-D; Also see supplementary figure S2B displaying all regions). The left parahippocampal gyrus and transverse temporal gyrus clusters overlapped with clusters where HC had shown greater activation than CHR-PLB participants during recall in the paired group comparison.

Relationship between recall performance and brain activation:

Across all participants, total recall score was directly correlated ($r=0.28$, $p=0.046$) with the level of left parahippocampal activation during recall. See eResults for exploratory analyses examining relationship between brain activation and symptoms.

DISCUSSION

As expected and in line with data from previous neuroimaging comparisons of CHR subjects and controls, we found that under placebo conditions, CHR participants showed differential activation relative to controls in several regions. These regions of differential response included the three areas thought to be critical to the pathophysiology of the CHR state, the striatum (during verbal encoding), and the MTL and midbrain (during verbal recall).

To test our main hypothesis, we identified regions where there was a linear pattern of activation across the three subject groups, such that the level of activation in CHR subjects given CBD was intermediate to that in the CHR-placebo and control groups. We found that this pattern of differential activation was evident in the striatum during encoding, and in the parahippocampal
cortex and midbrain during recall. Moreover, these regions of differential activation overlapped with
the areas where CHR participants under placebo conditions had shown altered activation in the
paired comparison with the controls. These findings suggest that during verbal encoding, the
administration of a single dose of CBD attenuated the reduction in the striatal response that evident
in CHR participants relative to controls under placebo conditions. Similarly, administration of CBD
appeared to attenuate the reduction in the parahippocampal and midbrain responses during verbal
recall that was seen in CHR participants under placebo conditions relative to controls. Although this
interpretation is cautious because the findings are based on cross-sectional as opposed to within-
subject comparisons, these data suggest that in these regions, CBD may partially normalise
responses to verbal encoding and recall in CHR subjects. As there were no significant differences in
memory performance, this differential activation was not attributable to differential task
performance.

Acute effects of CBD on responses in these areas in CHR participants are consistent with previous
data from two studies that used a single dose of CBD in healthy volunteers. These studies indicated
that in controls, CBD augmented parahippocampal and striatal activation17,18 during the same
learning task17 as used in the present study and had a similar effect on parahippocampal and striatal
responses during an attentional salience task18. In both of these studies, the administration of a single
dose of THC induced transient psychotic symptoms, and the effect of THC on parahippocampal and
striatal activation was the opposite to that of CBD.

Preclinical models suggest that overactivity in the MTL region drives subcortical dopamine
dysfunction through projections to the striatum and midbrain55,56. Moreover, neuroimaging studies in
CHR subjects indicate that the subsequent onset of psychosis is linked to alterations in MTL
structure31 and function32,34, and to elevated striatal and midbrain dopamine function55-59. Effects of
CBD on parahippocampal, striatal and midbrain function in CHR participants are thus of particular
interest as these areas may play a critical role in the pathophysiology of psychosis50. A partial
normalization of dysfunction in these regions could contribute to the therapeutic effects of CBD that
have been reported in patients with psychosis26,27 and anxiety disorders25.
The molecular mechanism of action that may underlie the effects of CBD in CHR patients is unclear. CBD has effects on a number of signaling pathways, including on the CB1 receptors and may modulate glutamatergic neurotransmission particularly in the hippocampus through multiple pathways and striatal glutamatergic and CB1 receptor expression. In patients with psychosis, the effects of CBD on psychotic symptoms have been related to its influence on levels of the endogenous cannabinoid anandamide. Future studies therefore need to investigate the neurochemical and receptor level mechanisms that may underlie the antipsychotic effects of CBD.

Across all participants, the level of activation in the left parahippocampal cortex during verbal recall was directly correlated with total recall score during the task, consistent with the key role of this region in relational memory binding and retrieval and in supporting association-based recall.

Attenuated parahippocampal engagement in CHR-PLB is consistent with meta-analytic and independent evidence from studies in patients with established psychotic disorders such as schizophrenia and in studies in those at clinical and familial/genetic risk of psychosis.

Further discussion of the results is presented as supplementary material (see eDiscussion 1).

Limitations

Our results need to be considered in light of certain caveats including related to study design (see eDiscussion 2).

Conclusions

This study suggests that a single dose of CBD in an experimental setting may partially normalise dysfunction in the MTL, striatum and midbrain in subjects at CHR for psychosis. It would be useful to now investigate whether similar modulatory effects are evident in patients who have received a course of treatment with CBD in a clinical setting.
REFERENCES:

Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. *Nat Rev Neurosci.* 2016;17(8):524-532.

Acknowledgements

Funding

This study was supported by a Medical Research Council grant (MR/J012149/1). Dr Bhattacharyya was supported by the National Institute for Health Research (NIHR), UK through a NIHR Clinician Scientist Award (NIHR CS-11-001), when this work was carried out. The authors also acknowledge the support of the National Institute for Health Research (NIHR)/Wellcome Trust King’s Clinical Research Facility and the NIHR Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King’s College London.

Role of the funding source

The views expressed here are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. All authors have approved the final version of the paper.

Contributors

SB and PM designed the study; SB supervised the collection (RW, EAK) and analysis (AON) of the data and wrote the first draft of the paper. All authors contributed to the interpretation of the data, revised the manuscript and have approved the final manuscript.

Access to Data and Data Analysis: Sagnik Bhattacharyya had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Conflict of interest disclosures

Robin Murray has received honoraria giving lectures/seminars at meetings supported by Janssen, Sunovian, Otsuka, and Lundbeck. All authors declare that they have no conflicts of interest.
Table 1. Sociodemographic and clinical measures at baseline

<table>
<thead>
<tr>
<th></th>
<th>HC (n=19)</th>
<th>CHR-PLB (n=17)</th>
<th>CHR-CBD (n=16)</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean±SD</td>
<td>23.89±4.14</td>
<td>25.35±5.24</td>
<td>22.43±4.95</td>
<td>HC vs CHR-PLB: p=0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHR-PLB vs CHR-CBD: p=0.11</td>
</tr>
<tr>
<td>Gender (m:f)</td>
<td>16:8</td>
<td>7:10</td>
<td>10:6</td>
<td>HC vs CHR-PLB: p=0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHR-PLB vs CHR-CBD: p=0.30</td>
</tr>
<tr>
<td>Education (years), mean±SD</td>
<td>16.94±1.59</td>
<td>12.00±3.69</td>
<td>14.50±3.06</td>
<td>HC vs CHR-PLB: p=0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHR-PLB vs CHR-CBD: p=0.15</td>
</tr>
<tr>
<td>CAARMS positive symptoms</td>
<td>42.94±29.46</td>
<td>40.19±20.79</td>
<td>40.19±29.46</td>
<td>p=0.75</td>
</tr>
<tr>
<td>CAARMS negative symptoms</td>
<td>28.41±16.49</td>
<td>23.25±16.49</td>
<td>23.25±16.49</td>
<td>p=0.43</td>
</tr>
<tr>
<td>STAI-S</td>
<td>38.94±10.17</td>
<td>40.31±9.06</td>
<td>40.31±9.06</td>
<td>p=0.68</td>
</tr>
</tbody>
</table>

Urine Drug screen (UDS) results: Clean
- THC: 8/10
- Morphine: 0/1
- Benzodiazepines: 1/0
- PCP: 1/0
- Missing: 2/3

Cannabis Use: Lifetime use (Current use) (n) - 17 (7) 15 (7)
- Once/ twice monthly: 12/11
- Few times a year: 3/1
- Few times a year: 0/2
- Only once/twice lifetime: 2/1

Alcohol Use: Lifetime use (Current use) (n) - 13 (10) 12 (11)
- More than once a week: 2/1
- Few times a month: 4/4
- Few times a month: 3/1
- Only once/twice lifetime: 2/0

Nicotine Use: Lifetime use (Current use) (n) - 7 (5) 11 (9)
- More than once a week: 6/8
- Few times a month: 1/2
- Few times a month: 0/1

Total recall score 29.74±2.51 27.62±4.42 28.31±2.91 F2,48=1.84, p=0.17

*HC were selected to have minimal drug use and hence not compared with CHR groups on these parameters
*HC tested negative on UDS for all substances tested.
*Cannabis use ≤ 10 times lifetime (no current users).
*Alcohol use: Lifetime users-13; Frequency (More than once a week- 5; Few times a month- 3; Few times a year- 4)
*Nicotine use: Lifetime users-5 (2 current users); Frequency (Daily-2; Few times a month- 1; Few times a year- 1; Only once/twice lifetime- 1)
Table 2A: Differences in activation between placebo-treated CHR (CHR-PLB, n=16) participants and healthy controls (HC, n=19) during verbal encoding.

<table>
<thead>
<tr>
<th>Region</th>
<th>Coordinates of peak (TAL)</th>
<th>Cluster size</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHR-PLB > HC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle frontal gyrus extending to inferior frontal gyrus and insula</td>
<td>36 37 10</td>
<td>165</td>
<td>0.0001</td>
</tr>
<tr>
<td>Claustrum/ Insula extending to inferior frontal gyrus and putamen</td>
<td>-25 26 3</td>
<td>96</td>
<td>0.001</td>
</tr>
<tr>
<td>Precentral gyrus extending to postcentral gyrus and inferior parietal lobule</td>
<td>40 -7 36</td>
<td>134</td>
<td>0.00051</td>
</tr>
<tr>
<td>Left cerebellum extending to lingual gyrus</td>
<td>-40 -67 -16</td>
<td>77</td>
<td>0.0011</td>
</tr>
<tr>
<td>CHR-PLB < HC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcallosal gyrus / caudate head</td>
<td>14 11 -10</td>
<td>72</td>
<td>0.00093</td>
</tr>
<tr>
<td>Anterior cingulate</td>
<td>-4 41 0</td>
<td>18</td>
<td>0.00093</td>
</tr>
<tr>
<td>Caudate tail extending to posterior cingulate cortex</td>
<td>18 -33 16</td>
<td>28</td>
<td>0.00021</td>
</tr>
<tr>
<td>Precuneus extending to cuneus</td>
<td>4 -63 30</td>
<td>156</td>
<td>0.00021</td>
</tr>
</tbody>
</table>

TAL = Talairach coordinate system. *Corrected for less than 1 false positive cluster.
Table 2B: Differences in activation between placebo-treated CHR (CHR-PLB, n=16) participants and healthy controls (HC, n=19) during verbal recall

<table>
<thead>
<tr>
<th>Region</th>
<th>Coordinates of peak (TAL)</th>
<th>Cluster size</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferior frontal gyrus extending to middle frontal gyrus, insula and precentral gyrus</td>
<td>47 11 23</td>
<td>146</td>
<td>0.0001</td>
</tr>
<tr>
<td>Cuneus extending to fusiform gyrus, lingual gyrus and posterior cingulate cortex</td>
<td>29 -74 7</td>
<td>196</td>
<td>0.0001</td>
</tr>
<tr>
<td>Cerebellum extending to middle occipital gyrus and fusiform gyrus</td>
<td>-36 -63 -13</td>
<td>83</td>
<td>0.0015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Coordinates of peak (TAL)</th>
<th>Cluster size</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parahippocampal gyrus extending to midbrain, cerebellum and thalamus</td>
<td>-18 -26 -13</td>
<td>131</td>
<td>0.000096</td>
</tr>
<tr>
<td>Superior temporal gyrus extending to the middle temporal gyrus</td>
<td>-50 -18 0</td>
<td>80</td>
<td>0.00038</td>
</tr>
<tr>
<td>Superior temporal gyrus extending to the transverse temporal gyrus</td>
<td>-50 -30 13</td>
<td>33</td>
<td>0.003</td>
</tr>
<tr>
<td>Middle frontal gyrus</td>
<td>-25 11 33</td>
<td>57</td>
<td>0.0034</td>
</tr>
</tbody>
</table>

TAL = Talairach coordinate system. *Corrected for less than 1 false positive cluster.
Table 3A: Differences in activation between placebo-treated CHR (CHR-PLB, n=16) and CBD-treated CHR (CHR-CBD, n=15) subjects during verbal encoding and recall

<table>
<thead>
<tr>
<th>Region</th>
<th>Coordinates of peak (TAL)</th>
<th>Cluster size</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoding: CHR-PLB > CHR-CBD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parahippocampal gyrus, extending to superior temporal gyrus and cerebellum</td>
<td>-29 -30 -13</td>
<td>75</td>
<td>0.0032</td>
</tr>
<tr>
<td>Encoding: PLB-CHR < CBD-CHR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precentral gyrus</td>
<td>43 -7 30</td>
<td>40</td>
<td>0.0033</td>
</tr>
<tr>
<td></td>
<td>-40 -11 36</td>
<td>72</td>
<td>0.0005</td>
</tr>
<tr>
<td>Recall: PLB-CHR < CBD-CHR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cingulate gyrus, extending to body of caudate</td>
<td>-14 15 30</td>
<td>365</td>
<td>0.00010</td>
</tr>
<tr>
<td>Precentral gyrus, extending to cingulate gyrus</td>
<td>43 -18 33</td>
<td>362</td>
<td>0.00010</td>
</tr>
<tr>
<td>Medial frontal gyrus</td>
<td>-7 0 49</td>
<td>61</td>
<td>0.0021</td>
</tr>
</tbody>
</table>

TAL = Talairach coordinate system. *Corrected for less than 1 false positive cluster.

There were no significant clusters for **PLB-CHR > CBD-CHR** during recall.
Table 3B: Linear relationship in activation across all groups during verbal encoding (CHR-PLB, n=16; CHR-CBD, n=15; HC, n=19)

<table>
<thead>
<tr>
<th>Region</th>
<th>Coordinates of peak (TAL)</th>
<th>Cluster size</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHR-PLB > CHR-CBD > HC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferior frontal gyrus, extending to middle frontal gyrus and insula</td>
<td>40 37 10</td>
<td>135</td>
<td>0.0001</td>
</tr>
<tr>
<td>Insula, extending to putamen</td>
<td>-36 11 10</td>
<td>112</td>
<td>0.0004</td>
</tr>
<tr>
<td>Precentral gyrus</td>
<td>-40 -11 30</td>
<td>39</td>
<td>0.0040</td>
</tr>
<tr>
<td></td>
<td>-51 -4 16</td>
<td>34</td>
<td>0.0031</td>
</tr>
<tr>
<td></td>
<td>40 -11 36</td>
<td>124</td>
<td>0.0002</td>
</tr>
<tr>
<td>Fusiform gyrus, extending to cerebellum</td>
<td>43 -44 -13</td>
<td>53</td>
<td>0.0027</td>
</tr>
<tr>
<td>Cerebellum, extending to fusiform gyrus</td>
<td>-22 -52 -16</td>
<td>100</td>
<td>0.0004</td>
</tr>
<tr>
<td>CHR-PLB < CHR-CBD < HC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caudate head, extending to anterior cingulate and putamen</td>
<td>-14 22 0</td>
<td>44</td>
<td>0.0041</td>
</tr>
<tr>
<td>Subcallosal gyrus/ caudate head</td>
<td>14 11 -10</td>
<td>87</td>
<td>0.0011</td>
</tr>
<tr>
<td>Caudate tail, extending to posterior cingulate cortex</td>
<td>18 -37 13</td>
<td>65</td>
<td>0.0038</td>
</tr>
<tr>
<td>Precuneus, extending to Cuneus</td>
<td>4 -63 30</td>
<td>185</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

TAL = Talairach coordinate system. *Corrected for less than 1 false positive cluster.
Table 3C: Linear relationship in activation across all groups during verbal recall (CHR-PLB, n=16; CHR-CBD, n=15; HC, n=19)

<table>
<thead>
<tr>
<th>Region</th>
<th>Coordinates of peak (TAL)</th>
<th>Cluster size</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHR-PLB > CHR-CBD > HC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferior frontal gyrus, extending to middle frontal gyrus and insula</td>
<td>47 11 23 120 0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precuneus, extending to cuneus, lingual, middle occipital and</td>
<td>25 -74 7 176 0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fusiform gyri and cerebellum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebellum, extending to fusiform, lingual and inferior</td>
<td>-36 -63 -13 73 0.0019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>occipital gyri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHR-PLB < CHR-CBD < HC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parahippocampal gyrus, extending to midbrain and cerebellum</td>
<td>-18 -26 -13 82 0.0008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thalamus</td>
<td>-7 -26 -3 33 0.0032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transverse temporal gyrus, extending to superior temporal gyrus</td>
<td>-50 -26 13 33 0.0037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precentral gyrus, extending to cingulate gyrus and body of caudate</td>
<td>-36 18 36 60 0.0016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TAL = Talairach coordinate system. *Corrected for less than 1 false positive cluster.
Figure Legends:

Figure 1. Altered brain activation in CHR (CHR-PLB vs HC)

A. Clusters showing greater (red/yellow) or reduced (blue/green) activation in CHR-PLB compared to HC during the encoding condition.

B. Clusters showing greater (red/yellow) or reduced (blue/green) activation in CHR-PLB compared to HC during the recall condition.

C. Clusters showing greater (red/yellow) or reduced (blue/green) activation in CHR-PLB compared to CHR-CBD during verbal encoding.

D. Clusters showing greater (red/yellow) activation in CHR-PLB compared to CHR-CBD during the recall condition.

The right side of the brain is shown on the right of the images.

Figure 2. Effect of CBD on brain activation compared to placebo in CHR and healthy controls

A. Clusters where activation during encoding differed across the 3 groups in a linear relationship. In the head of caudate (red/yellow), activation was greatest in HC, lowest in CHR-PLB and intermediate in CHR-CBD. The opposite pattern (CHR-PLB>CHR-CBD>HC) was seen in occipital regions (blue).

B. Activation in each group in the right caudate head during encoding (arbitrary units; as indexed using median SSQ ratio)

C. Clusters where there was a linear group difference in activation during recall. In the parahippocampal region and midbrain (red/yellow), activation was greatest in HC, lowest in CHR-PLB and intermediate in CHR-CBD. The opposite pattern (CHR-PLB>CHR-CBD>HC) was seen in occipital regions (blue).

D. Median activation in each group in the midbrain during recall (arbitrary units; as indexed using median SSQ ratio)

SSQ ratio statistic refers to the ratio of sum of squares (SSQ) of deviations from the mean image intensity due to the model (over the whole time series), to the SSQ of deviations due to the residuals. The right side of the brain is shown on the right of the images.